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RELIABILITY AND MAINTENANCE IN EUROPEAN NUCLEAR POWER PLANTS:
A STRUCTURAL ANALYSIS OF A CONTROLLED STOCHASTIC PROCESS

Roland Sturm 
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This dissertation analyzes the operating performance of 
nuclear power plants in five European countries using panel data on 
individual reactors. Two aspects of performance are of main 
concern: plant availability and plant reliability (defined as the 
conditional probability of an unplanned shutdown). The goal of the 
research is a unified framework that combines behavioral models of 
optimizing agents with models of complex technical systems which 
take into account the dynamic and stochastic features of the 
system. In order to achieve this synthesis, two lines of work are 
necessary. One line requires a deeper understanding of complex 
production systems and the type of data they give rise to (chapters 
2 and 3), the other line involves the specification and estimation 
of a rigorously specified behavioral model (chapter 4).

Nuclear power plant operations are modeled as a controlled 
stochastic process and the sequence of up- and downtime spells is 
analyzed during failure time and point process models. Similar in 
spirit to work on rational expectations and structural econometric 
models, the behavioral model of how the plant process is controlled 
is formulated at the level of basic processes, i.e. the objective
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function of the plant manager, technical constraints, and 
stochastic disturbances. In contrast to much of the rational 
expectations literature, the specification of the objective 
function and technical constraints is based on statistical 
information in the data and theoretical considerations of the 
properties of a repairable dynamic production system. This 
"application-oriented" approach therefore differs from the "method- 
oriented" approach prevalent in that literature, in which the 
statistical specification has been chosen largely for analytic 
convenience.
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1. Introduction

Many industrialized countries adopted the highly promising 
nuclear power technology in the 1950's and 60's to satisfy their 
growing energy demands. But despite international copperation and 
unprecedented financial support from national governments, the 
operating experience of nuclear power plants has fallen short of 
expectations in most countries.

This dissertation analyzes the operating experience of plants 
in five European countries, all of which are heavily dependent upon 
nuclear power and the Light Water Reactor technology: Belgium, 
France, Germany, Sweden, and Switzerland. Although much attention 
has been paid to the safety and economic viability of nuclear power 
in the literature, these questions have been considered in 
isolation and have been analyzed using static and deterministic 
models (see section 1.1). This dissertation focuses upon the 
dynamic and stochastic features of plant operations and upon the 
interdependence between plant economics (measured by availability 
or capacity factors) and plant reliability and safety (measured by 
the probability of safety-related unplanned shutdowns).

The ultimate goal is a unified framework that combines 
behavioral models of optimizing agents with models of complex 
technical systems. In order to achieve this synthesis, two lines of 
work are necessary. One line requires a deeper understanding of 
complex production systems and the type of data they give rise to, 
the other line involves the specification and estimation of a

1
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precise and rigorous behavioral model. The ideas developed in the 
following chapters apply not only to nuclear power plant 
operations, but may also be useful for understanding and 
forecasting the failure or success of other new technologies.

Section 1.1 provides some background, including the definition 
of some technical terms, and reviews the relevant literature on 
nuclear power plant operations. Conceptual and technical 
difficulties encountered in structural econometric models are 
considered in section 1.2. The final section of this chapter, 
section 1.3, gives an overview of the main parts of the 
dissertation.

1.1 Nuclear power - background and previous work

Nuclear power plays a central role in many European economies. 
It generates over 80% of electricity in France, over 50% in 
Belgium, over 40% in Sweden, and over 30% in Germany and 
Switzerland, compared to about 20% in the U.S. or Canada. As in the 
U.S., the Light Water Reactor (LWR) is the prevalent technology in 
Western Europe outside Great Britain. There are two main types of 
Light Water Reactors: the Pressurized Water Reactor (PWR) and the 
Boiling Water Reactor (BWR). LWR's need to be shut down 
periodically for refueling and preventive maintenance and major 
repairs are performed during these periodic refuel outages as far

2
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as possible1. When there are unplanned shutdowns, the plant is 
generally returned to operations as quickly as possible. The 
interval between refuel outages is commonly known as a fuel cycle 
(when the refuel outage is included) or an operating cycle (when it 
is not included).

Plant and reactor safety is arguably the most extensively 
investigated problem surrounding nuclear power. The traditional 
approach to safety engineering2 has studied the physical behavior 
of the plant following an assumed initial event or malfunction 
using deterministic models. The purpose of this deterministic 
safety analysis is to check whether the design of the plant can 
withstand the consequences of an assumed event or needs to be 
modified. Deterministic safety analysis cannot address the 
inherently stochastic questions of the probability of fault 
conditions or the possibility that systems may not work as 
intended. Probabilistic safety (risk) analysis was developed to 
address these questions and has led to the well known reactor 
safety studies (Nuclear Regulatory Commission, 1975, Deutsche 
Risikostudie Kernkraftwerke, 1980). Safety issues have also been 
studied by social scientists in various disciplines, such as

1 Gas-Cooled or Heavy Water Reactors (used in Great Britain 
and Canada, respectively) can be refueled under load and 
maintenance patterns thus look very different.

2 Safety engineering could be defined in this context as the 
development of a reactor design to prevent the release of 
radionuclides. Pershagen's (1989) monograph covers the engineering 
principles and practices of LWR safety, including deterministic and 
probabilistic safety analysis.

3
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sociology (Perrow, 1984), political science (Morone and Woodhouse, 
1989), or large interdisciplinary projects such as the German 
research on the compatibility of nuclear energy and democratic, 
societies (Meyer-Abich and Schefold, 1986).

While the literature has focused on catastrophic events such 
as core melt or core disruptive accidents3, many type of failures 
that are a safety hazard do not necessarily cause a catastrophic 
accident: McCormack and Gallaher (1982) report that about 3200 
events which were classified by the Nuclear Regulatory Commission 
as safety-related and required a written licensee event report 
occurred in the U.S. in a single year (1980). This corresponds to- 
an average of 62 safety-related events per BWR and of 42 safety- 
related events per PWR. Of course, only the most serious of these 
events led to an unscheduled plant shutdown and the total number of 
such shutdowns was less than 100. Although reporting practices vary 
between countries, events leading to unplanned outage, almost 
always due to reactor scrams4, are completely reported in all 
Western European countries. Thus, unplanned outage statistics are 
an important measure of plant reliability. One of the goals of this 
study is to analyze how the instantaneous probability (or more 
correctly, the hazard or intensity  ̂ of unplanned outages changes 
over time and depends on plant characteristics.

3 Reactor safety studies, for example, attempt to estimate the 
probability of such an event in a year.

4 a reactor scram is an emergency shutdown in which the 
control rods are inserted as rapidly as possible into the core to 
stop fission.

4
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Economic studies typically consider plant productivity, a 
performance aspect quite different from safety. Two measures are 
commonly cited: The availability factor measures the percentage of 
time a plant has been available over a given period, whether or not 
it has been fully utilized in generating electricity; the capacity 
factor (or load factor) measures the ratio of electricity generated 
to potentially feasible generation.

The most common type of study assumes certain prices, 
productivity levels, and other parameters, and then calculates 
whether nuclear power is cheaper or more expensive than alternative 
sources of energy according to some deterministic model5. But there 
also exists a body of empirical economic research devoted to more 
complex issues. One of the main issues in plant operations that has 
been addressed in that line of research has been learning during 
operation (Joskow and Rozanski, 1979, Lester and McCabe, 1988, 
Krautman and Solow, 1990)6. The three studies cited use a reduced 
form approach which involves regressing a measure of plant 
productivity on cumulative output, age, or other observed 
covariates. However, because they ignore the actual dynamics of 
production, studies following this approach lead to spurious 
findings. Indeed, it will be shown below (section 2.3) that reduced 
form models would "discover" nonzero learning effects even in a

5 See Michaelis (1986) for numerous such calculations.
6 Other issues include scale economies, construction times, 

and construction costs. The recent book by Thomas (1988) provides 
many references, appendix E in David et al. (1988) by Bresnahan and 
Rothwell reviews empirical economic studies of commercial nuclear 
power.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

stationary continuous time process.
The question how the stochastic and dynamic features of 

nuclear power plant operations can be modeled raises an immediate 
difficulty since the standard formulation of economic production 
theory is not well suited for such a task. As David et al. (1988) 
have argued, economic production functions are static, 
deterministic "black box" representations of actual production 
processes. They suggest, instead, a renewal process or duration 
model approach for analyzing individual plant operating histories, 
such as the sequence of "up" and "down" times. Some relevant 
techniques of duration analysis, originally developed in 
reliability engineering and popularized in the biomedical 
literature, have been widely used in studying labor market 
phenomena and demographic processes. Studies using duration models 
in the context of nuclear power operations include Rothwell (1989), 
Rothwell and Jensen (1990), and David, Rothwell, and Maude-Griffin 
(1991).

Classic duration or failure time models are renewal models 
concerned with single events ending a spell. The theory of renewal 
processes is well developed (Cox, 1962) and it is not surprising 
that the more complex multiple spell models in economics, discussed 
in Heckman and Singer (1985), are built on the renewal model: time 
is reset to zero at the beginning of each spell (occurrence of an 
event) . I define time measured in such a way as spell time. In 
actual applications (e.g. David and Mroz, 1989), dependencies 
between successive spells may be introduced through mixing

6
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distributions (unobserved heterogeneity) or covariates.
Instead of using single spell/renewal models as the building 

block for multiple spell models, one could generalize hazard 
function modeling beyond the first event to second and subsequent 
events. This is a central idea for the formal model of a repairable 
system in section 3.2, which provides a different conceptual 
approach to analyze multivariate failure time data. As discussed in 
section 3.2, this system process approach can model the aging and 
wear-out of a complex system; the traditional renewal approach can 
only model the life of components. Time in the system process model 
is measured from a constant point for several events. When it is 
measured from the day of first criticality or the day of first 
commercial production, I call it plant time, if it is measured from 
the start up from a refuel outage, it is refered to as cycle time. 
Statistical results show that periodic fuel cycles are an important 
unit of analysis (section 2.2).

7
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1.2 Structural econometric models

In contrast to purely engineering questions, the successful 
adoption of a technology involves human decision-making. Thus a 
behavioral model is necessary in order to assess empirically the 
impacts of regulation, economic incentives, or new technologies. As 
I have argued elsewhere (Sturm, 1989a), a model that estimates the 
strength of regulation by comparing reported "regulated" downtimes, 
but which ignores the possibility that decision makers can react to 
changes in their environment, invariably fails to give correct 
predictions when used for a policy analysis. Similar arguments, 
familiar to most economists as the "Lucas critique" (Lucas, 1976), 
can be brought forward against the uncritical use of regression 
analysis results or reduced form models for predictive purposes. 
These arguments generally point towards the violation of two 
principles: the first is that individuals respond to changes in 
their opportunities; the second is that decisions are made over 
time in a stochastic environment.

Structural econometric models are consistent with these two 
principles. The original development of these ideas occurred in not 
in microeconomics, but in macroeconomics, e.g. Lucas (1976), 
Sargent and Wallace (1976), Hansen and Singleton (1982). The 
importance of formulating dynamic economic models at the level of 
"deep" or "primitive" parameters, i.e. parameters describing the 
underlying distributions of preferences (utility functions) and

8
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transient disturbances, is emphasized in Sargent (1979). 
Microeconomic applications have only appeared in recent years. 
Three pioneering papers in microeconomics are Gotz and McCall 
(1984), Miller (1984), and Wolpin (1984). Gotz and McCall describe 
and estimate a model of Air Force officers making decisions of 
whether to stay in or leave the Air Force, Miller estimates a 
multi-armed bandit model of employment decisions by numerically 
calculating dynamic allocation indices, and Wolpin estimates a 
model of decision making by Malaysian women about the number and 
timing of births. Other structural models have been developed by 
Pakes (1986) for estimating an optimal stopping model of patent 
renewal, Wolpin (1987) for the analysis of job acceptances of high 
school graduates, Ryu (1990) for a replacement model, Fafchamps 
(1990) for a peasant's labor allocation to different activities in 
Burkina Faso, and Berkovec and Stern (1991) for a dynamic 
programming model of job exit behavior of older men. An important 
contribution is Rust's (1988) development of an algorithm that can 
be used to estimate structural econometric models for a wide range 
of applications and which has been employed by Rust (1987), 
Montgomery (1987), Das (1989), and Kennet (1990).

My definition of a structural econometric model is narrow. Two 
characteristics are essential:
1. the economic model is specified in terms of "primitive" 
processes such as preferences and technology, and
2. there is a one-to-one correspondence between the dynamic

9
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economic model and its econometric specification.
Thus a formal economic model that only loosely motivates the 

econometric implementation is not a structural econometric model. 
A typical case encountered in the literature is that the economic 
model is rigorously specified/ but the statistical model is chosen 
for tractability and assumptions are made about the form of the 
likelihood function rather than about basic economic processes. In 
other words, the standard econometric model is "method-oriented" 
rather than "problem-oriented". The distinction is far from trivial 
and I will now discuss in more detail the two main conceptual and 
technical difficulties arising in estimating structural models.

The first point is conceptual. In the economic paradigm, an 
agent's decisions are the result of solving an optimization 
problem. Theoretical models specify how the decision y (e.g. the 
demand for certain commodities) depends on the objectives and 
constraints of an agent x, for example y=f(x). Often the interest 
is in some constant parameters 0 which are unknown and the equation 
is reformulated as

y-f(x,0) (1)

Note the statistical degeneracy which is typical for almost all 
decision theoretic models: y is a deterministic function of x and
0. In general, it is impossible to find a 0 which satisfies 
equation (1) —  the economic model is rejected by the data. Thus

10
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equation (1) is often amended to a statement about observed 
decisions

y=f{x, 0) +u (2)

with u being some disturbance. Unfortunately, this ad hoc 
"solution" of the statistical degeneracy problem contradicts the 
optimizing model!7 The logical inconsistency between economic and 
statistical model is caused by the economic model assumption that 
the agent's decisions are described by a unique solution to an 
optimization problem and the statistical model implication that the 
agent randomly chooses actions, which are necessarily suboptimal.

Various suggestions to solve this logical difficulty can be 
found in the papers mentioned above. The common approach is to 
acknowledge that the information available to the econometrician 
about an individual's decision problem is incomplete and to 
formally model this missing information. Differences in behavior 
reflect differences in some unobserved components whose effects are 
traced throughout the optimization problem. A specified 
distribution of "unobservables" is filtered through the economic 
decision problem and induces a distribution on observed decisions, 
say g(y).

The difficulty is that the agents response function f(), let

7 The only exception to this rule is the rare case when the 
only source of u is measurement error, i.e. the agent makes 
decisions according to (1) but we measure them according to (2),

11
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alone the distribution g()/ only has a closed form solution for 
very special cases of preferences (utility functions), constraints, 
and the distribution of unobservables. This causes many researchers 
to switch from a formal theoretical model to a "reduced" form 
approach by assuming that f() or g() "approximately" equals some 
tractable function— the "method-oriented" rather than "problem- 
oriented" statistical implementation. The impossibility of 
obtaining closed form expressions occurs especially in dynamic 
models: the solution to a general dynamic programming problem is 
only defined recursively through Bellman's principle of 
optimality3. It is well known that the time required for a 
numerical calculation of the solution of a dynamic program can 
quickly exceed any bounds (Bellman's "curse of dimensionality"). 
And although obtaining one solution for a set of parameters may 
solve an agent's problem, it does not help the econometrician who, 
in order to obtain g(), needs in principle a solution for every 
possible value of the unobserved components and the unknown 
parameters.

Among researchers who pursue structural models, two approaches 
have been adopted. The traditional ("closed form") approach is to 
look for functional forms of "primitive" processes (preferences, 
laws of motion, constraints) for which a closed form statistical 
model can be found. Although such work is often very ingenious

8 There are a few important exceptions (Sargent, 1987), 
notably models with linear laws of motion and quadratic 
preferences.

12
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(e.g. Ryu, 1990), the self-imposed restrictions on functional forms 
leads to implausible models which cannot be applied to actual 
problems. It is also impossible to perform a sensitivity analysis 
or compare different specifications of the basic processes.

Rather than relying on assumptions that guarantee a closed 
form expression for the likelihood function, the "algorithmic" 
approach defines the likelihood function only implicitly as the 
solution to an economic decision problem, but under some 
constraints which make the problem computationally feasible. Within 
limits, this approach liberates the researcher from having to make 
a priori assumptions regarding functional forms. However, the 
conceptual advantage of precise modeling of the economic problem is 
always bought at the cost of substantially increased computational 
demands. The particular approach taken here is to keep the 
flexibility of functions describing preferences (the cost or 
utility function) and laws of motion (the technical or plant 
process). No constraints are imposed on these basic economic 
processes, but the possible distributions of unobservable states is 
restricted. The assumption that unobserved states follow an extreme 
value distribution (as in a static random utility model that gives 
rise to a logit model) reduces the computational problem by several 
orders of magnitude. Note that I have performed all calculations on 
a personal computer, whereas other researchers had to resort to 
much more powerful machines9.

9 Fafchamps (1990), for example, performed his calculations on 
a Cray supercomputer.

13
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It is likely that alternative techniques will be developed in 
the future. Rather than solving for the distribution of y 
numerically, one could attempt to simulate it. A related idea has 
been discussed by Diggle and Gratton (1984) and such a "method of 
simulated likelihood" may become important to estimate more complex 
behavioral models. Preliminary work has been successful in that I 
was capable of obtaining estimates which were close to the maximum 
likelihood estimates. Of course, simulations were done for a very 
simple model which could be solved analytically in order to assess 
the quality of estimates. A discussion of these techniques, their 
problems and promises, is left for the future and is not attempted 
in this dissertation. Another approach is to use more ad hoc 
criteria for estimation, and the "method of simulated moments" 
(McFadden, 1989, Pakes and Pollard, 1989) has already been proven 
to be useful in structural econometric estimation (Pakes, 1986).

1.3 An overview
This study is based on a data set containing the operating 

history of individual reactors in five countries (see appendix 1 
for details). This data set permits one to analyze and estimate 
models of the process that generates the sequence and duration of 
"up" and "down" times determining performance measures of plant 
reliability and availability. Chapter 2 estimates a semi-Markov 
model (2.1) and tests the renewal assumption (2.2). The 
inconsistency of standard regression approaches with .continuous 
time production processes is demonstrated in section 2.3 and an

14
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alternative approach to measuring learning in a reliability growth 
model is discussed in section 2.4. Parametric models for the 
durations of the two most important types of outages are estimated 
in section 3.1, up time durations are analyzed in section 3.2. The 
simulation study in section 3.3 shows that the process formulation 
models actual time paths well, whereas Markov renewal models fail 
to display the observed cyclical behavior. Chapter 4 develops an 
econometric model of operating cycle management, i.e. the decision 
of the plant manager to schedule refuel outages. Based on the 
process model of plant operations developed in chapter 3, this 
behavioral model brings together various measure of plant 
performance, such as availability and reliability (unplanned outage 
rate) in a unified framework. It also demonstrates the existence of 
trade-offs between different aspects of plant performance and 
quantifies these trade-offs. Chapter 5 shows how this model can 
distinguish the effects of economic incentives and technical ("X- 
efficiency") factors on various aspects of nuclear power plant 
performance and how this explains observed differences between 
countries. Chapter 6 discusses extensions of this work and their 
potential application to other technologies. Several statistical 
techniques needed throughout the paper are reviewed in appendix 2.
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2. A descriptive analysis of nuclear power plant operations in 
Europe

The ratio of variable (operating) costs to fixed costs is low 
for nuclear power plants compared to fossil fuel plants. This is a 
major reason why nuclear power plants have mainly been used to 
cover base load requirements. There are also technical reasons why 
utilities are reluctant to change output levels quickly10. In the 
absence of substantial changes in the rate of production, the 
electricity production model is relatively simple: a plant produces 
output at a constant rate while running, generally near designed 
capacity, and it produces nothing during outages. But when is a 
plant running and when not?

The first section in this chapter gives descriptive statistics 
and estimates a semi-Markov model (defined in section 2.1.1) of the 
sequence of up- and downtimes for the sample. The data set covers 
the years 1981-1986 and all commercial Light Water Reactors in 
Belgium, France, Germany, Sweden, and Switzerland; details about 
the data can be found in Appendix 1. Despite being nonparametric, 
the semi-Markov model has some restrictions, such as the assumption 
of renewal at every transition. Section 2.2 tests the renewal 
assumption and alternative hypotheses formally using nonparametric 
rank tests. The renewal assumption is rejected and this has 
implications for descriptive and structural models: economic models

10 Two examples are potential problems with fuel rods and 
thermal stresses on large components.
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built on simple maintenance models from engineering or operations 
research are inappropriate for a structural model of nuclear power 
plant operations.

The importance of the stochastic process formulation for 
continuous production processes is demonstrated in section 2.3 
where it is shown that several linear regression models estimated 
by previous investigators are inconsistent with even the simplest 
continuous time model. As the goal of much of that literature was 
directed at estimating learning curves, section 2.4 presents an 
alternative model for estimating improvements in reliability.

Figure 1: Transitions

EQUIPMENT 
FAILURES <1>

RUNNING <0>
"7KT

OPERATOR 
ERROR <2> REFUELING <3> EXOGENOUS<4;

(Grid Failure, Strike)

2.1 A Semi-Markov Model of Plant Operation
The plant can be in one of several states at any point in 

time. A simplified representation of the state space S and possible 
transitions between states are given in figure 1. The International 
Atomic Energy Agency (IAEA) provides additional information at the 
reactor system and even component level. However, a finer 
distinction is not useful for the purpose of this study because
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there are not enough observations to fruitfully analyze a more 
extensive state space formulation. One run ("up") state and four 
"down" states are distinguished: outages due to equipment failure 
(1)/ outages due to operator error, repair, or testing (2), planned 
refuel outages (3), and "exogenous" outages such as lightning, 
earthquakes, grid failure, or labor disputes (4).

By far the most common cause for an exit from the run state is 
an equipment failure (state 0-»l), almost all of which cause an 
automatic scram. This transition determines plant reliability and 
is of major interest for plant safety because, as mentioned before, 
only the most serious safety-related events will necessitate a 
plant shutdown. Although outages due to equipment failures occur 
relatively often, most of the downtime is not spent in state 1, but 
in state 3 (refueling and maintenance), because the average sojourn 
time in state 1 (or 2 or 4) is relatively short compared to the 
average sojourn time in state 3. Thus the transition from state 3 
to state 0 is an important determinant of plant availability and 
productivity. States 2 and 4 are of relatively minor importance 
during any given interval both as far as interruptions of uptimes 
and total downtime is concerned, but it is important to separate 
these effects in order to discuss differences in plant reliability 
and availability between countries and plant vintages.

Note that the classification scheme used by the IAEA, which 
focuses on reactor systems and components, differs from engineering 
practices, which typically classify unplanned outages according to

18
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the type of the initiating event. While the IAEA distinguishes 
equipment failures, operator errors, and external causes, the three 
corresponding (but different) classes of initiating events in 
safety analysis (e.g. Pershagen, 1989) are:
- Loss-of-Coolant-Accidents (LOCA), which are events caused by a 
pipe break or leakage in the primary system;
- transients, a general term for abnormal events other than LOCA's 
occurring during operations;
- external events, such as lightning, earthquakes, fire (which is 
considered an external even if it originates within the plant), 
etc.

2.1.1 The statistical model
Let {X(r); 0£r«»} be a family of random variables where X(r) 

denotes the state of the plant (see figure 1) at time r. I consider 
both the classic case where {X(r)} is a Markov process with 
stationary transition probabilities, i.e.

Pij(t)=p{x(t+u)=j|x(u)=il=PlX(t)=j'|x:(0)=i} i,je8 (3)

and the case when the transition probabilities are nonstationary. 
The standard Markov formulation is not innocuous because equation
(3) only holds if transition times between states i and j are 
exponentially distributed (with constant hazard parameter A±j). As 
this may be questionable, I also consider time-dependent transition 
intensities A.1;J(t).

For the stationary Markov model with unknown transition
19
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probability functions and intensities the likelihood function 
based on a continuously observed sample path of X(t) on [0,T], 
conditional on the initial state x(0), is11

where ni;j is the observed number of transitions from state i to 
state j, t1 is the total amount of time spent in state i, and

The maximum likelihood estimate for A13 and its variance are:

Nonparametric estimation of time dependent transition 
intensities provides additional insights into details of the 
statistical process and simultaneously provides a means to assess 
the appropriateness of the stationary Markov assumption. Despite 
time dependence, the memory of such a semi-Markov process remains 
limited: spell durations are independent and the process
"remembers" only time since the last transition (time is spell 
time). The model of sojourn times (spell durations) in any one 
state can be rewritten as what is known in the biometrical

11 For the following discussion consider everything conditional 
on the observation period.

(4)

(5)
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literature as an independent competing risk model (Kalbfleisch and 
Prentice, 1980, Ch. 7). This is a consequence of the limited memory 
of the semi-Markov model and it permits a nonparametric estimation 
technique which is very easy to implement12.

The independent competing risk model assumes that there are 
several statistically independent causes which can terminate the 
sojourn in one state, conceptualized commonly with "latent" 
transition times. Of course, only the smallest of these latent 
transition times is realized and observed. Generally speaking, the 
sojourn time in state i has the survivor function

Si(t) =Pr {all latent transition times > t)
T _  , , T T  , , (7)
=II'Pr(-rj>t> “I I 5** (t>J J

where the second equality is due to the independence assumption and 
the existence of cause specific survivor functions Si3(t) (the third 
equality) follows from Tsiatis (1975). Statistically, it is 
impossible to test the independence assumption (Cox, 1959, Tsiatis, 
1975) and for descriptive purposes the independent censoring model 
is equivalent to any model with dependency between the latent 
transition times. It does not necessarily provide valid answers to 
policy questions of the type: "what is the hazard rate for
equipment failures given the 'removal' of some outage cause, for

12 See Lagakos, Sommer, and Zelen (1978) for a somewhat 
different derivation of nonparametric semi-Markov models.
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example, operator errors and test outages?"13 The survivor 
functions for transitions between states i and j can be expressed 
in terms of intensities as

C
S±j (t) =exp - J (u) du (8)

o

The semi-Markov and independence assumptions together allow to 
estimate each cause-specific survivor function individually using 
the product limit or Kaplan-Meier estimator

where rn is the size of the riskset (number of observations that 
are in state i) immediately before tx and d±jl is the number of 
transitions from i to j at t1. The estimated survivor function for 
the sojourn time in state i then becomes

Nonparametric tests complement plots of cause specific 
survivor functions. Because only the smallest latent transition 
time is observed, many cause specific transitions are incomplete 
fright censored) because a transition due to a different cause 
ended the sojourn in a certain state. Standard rank methods such as

13 Kalbfleisch and Prentice, (1980, Ch.7) discuss this problem 
in detail.

(9)

S i (t ) =]J S±j (t) (10)
J
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the Wilcoxon test need some modification to deal with the problem 
of censoring. These modifications have been discussed by Gehan 
(1965), Breslow (1970), Prentice (1978), and others. The null 
hypothesis in the two sample case (Gehan's test) is:

H0: F1=F1 G1=GZ (11)

where Fĵ is the distribution of failures in sample i and G± is the 
distribution of censoring values in sample i. The main disadvantage 
of Gehan's test is its sensitivity to censoring patterns. Because 
the assumption of identical censoring distributions is unlikely to 
be satisfied here I prefer Prentice's (1978) versions of the 
generalized Savage (log-rank) and Wilcoxon tests, which are less 
sensitive to censoring patterns. These two tests can also be used 
for multisample comparisons. A potential problem of all rank tests 
is that they may not be very powerful if F^Fj, but neither F2>F2 nor 
F1<F2. Plotting the survivor functions is an additional useful check 
if the null hypothesis is not rejected. Two and multiple sample 
tests for partially censored data are discussed in Kalbfleisch and 
Prentice (1980) and Cox and Oakes (1984).

As a practical matter, I condition on the first observed 
transition to avoid the problem of left censoring. Dropping the 
first incomplete observation, which for almost all plants is a 
sojourn time in the run state, will not cause a bias of any actual 
relevance given the relatively large number of observations on 
complete transitions for each plant. The left censoring problem 
could be addressed statistically, but it would require rather
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strong or even implausible assumptions (Heckman and Singer, 1985). 
A model which deals with left censored observations but requires 
cycles and a semi-Markov process in equilibrium has been discussed 
by Dewanji and Kalbfleisch (1987).

The finite observation interval (observations end in December 
1986) causes additional statistically independent right censoring 
for all types of transitions. However, censoring is very minor for 
outages and can be ignored for practical purposes14. Dropping 
censored observations, I provide nonparametric density plots using 
kernel estimates (see appendix 2) for outage durations.

2.1.2 Results
Consider first differences across countries using data on all 

commercial Light Water Reactors operating between 1981 and 1986 
(table 1). Time is measured in days and the table reports the 
reciprocal of the transition intensity for easier readability, i.e.

Under the assumptions of the stationary Markov process, this 
number can be interpreted as the mean time in days between a 
transition from i to j, conditional that no transition to a state 
other than j occurs. Compared to the usual calculation of a mean, 
a nonparametric method, the results depend on the exponentiality

14 An outage is censored only if the plant was down at the end 
of the observation period (31.12.1986), thus there could be at most 
one censored observation per plant. Given that outages other than 
refueling occur for a very small fraction of total time, censoring 
is negligible. Even for refuel durations, censoring is not a 
problem. Of 263 refuel outages, only 2 were censored (Tihange 1, 
Paluel 3); of 1136 outages due to equipment failure, only 3 were 
censored (Paluel 4, Tricastin 4, Grafenrheinfeld), all outages for 
other reasons were uncensored.
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assumption of the stationary Markov model. The observed number of 
transitions between the states ni;) are printed in parentheses. The 
standard errors are easily calculated from this information, 
according to equation (6), in order to perform tests.

Ignoring transitions intensities that cannot be estimated 
precisely because of the small number of events in the sample, for 
example, the intensity of transitions from state 0 to state 4, the 
most dramatic difference between countries exists in reliability 
or, equivalently, mean time until an equipment failure: 0-»l. The 
estimated mean time until an equipment failure is 6 times longer in 
Switzerland than in France. Figure 2 plots the nonparametric 
estimate of this cause-specific survivor function. The lines 
correspond to the following countries (from top to bottom): dots 
and dashes - Switzerland; closely spaced dots - Germany; dashes - 
Belgium; dots - Sweden; solid - France. Not surprisingly, tests 
strongly reject the hypothesis that plants in different countries 
are of the same reliability (table 2). I also perform two-way 
comparisons which reveal that even for the countries whose 
reliability is "closest" according to figure 2, the test of 
homogeneity is rejected at 10% or better for all pairs except 
France and Sweden.

A very simple graphical check of the stationary Markov 
assumption is to plot -ln(S^(t) against t. It follows from equation 
(8) that this should be a straight line if the hazard is constant 
and the distribution exponential. Figure 3 shows that sample
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hazards are relatively constant, implying that the exponential 
model is a fairly good description. The slight concavity suggests 
some negative duration dependence, but no deeper structural 
interpretation can be attached to this finding. In particular, one 
would suspect the existence of heterogeneity and the near constancy 
of the empirical hazards could very well be due to the effects of 
positive duration dependence for the hazards of each particular 
spell and heterogeneity in the population canceling each other. 
This well-known phenomenon is discussed in Barlow and Proschan 
(1975), Heckman and Singer (1985).

Another major difference between countries exists in the 
distribution of refuel durations (3-»0). Again, French plants appear 
to be substantially worse than others. In contrast, the 
distribution of the duration of repair outages, i.e. recoveries 
from equipment failures (l-»0), appears to be very similar. The 
corresponding plots appear in figures 4 and 5. Although the 
hypothesis of homogeneity across countries is rejected for the case 
of the distribution of refuel durations, this is not true for the 
distribution of repair durations (table 2).

The latter finding is consistent with the density plots of 
figures 6-9. Figure 6 gives nonparametric density estimates for the 
duration of spells in state 1 (equipment failures) using an 
Epanechnikov kernel with bandwidths h=1.0 in a) (which is likely to 
undersmooth the data), and h=10.0 in b) (which may oversmooth the 
data). As before, the lines correspond to the following countries:
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dashes - Belgium, solid - France, closely spaced dots - Germany, 
dots - Sweden, dots and dashes - Switzerland. There appears to be 
a mode between 1 and 2 days and a smaller second mode around one 
week. There may be a third mode further out in the tail (not 
plotted), but observations there are sparse. The bandwidths in 
figure 7 (refuel outages) are h=10 and h=30. The density plots 
clearly reveal the differences between countries discovered by the 
Markov model and by rank tests. There are few observations for 
states 2 and 4 (figures 8 and 9), which makes a detailed 
interpretation questionable. Note that the dotted and dashed line 
for Switzerland in figure 9 corresponds to 1 observation. The 
bandwidths are h=0.3 in a) and h=1.0 in b).

A question arising from this is to what extent differences in 
reliability or availability reflect differences in the composition 
of plants regarding vintages or technologies (Pressurized Water 
Reactors, PWR, vs. Boiling Water Reactors, BWR). France, for 
example, is the only country that has far more "new" plants than 
"old" plants15; Sweden has more BWR than PWR, Germany and 
Switzerland more PWR than BWR. I therefore stratify the sample for 
a particular country first according to vintage and then according 
to technology. The results for a comparison for vintages is

15 "Old" plants are defined as plants that started commercial 
operations between 1970 and 1980, "new" plants started commercial 
operation after 1980.
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reported for France and Sweden16, the comparison of technology PWR- 
BWR is limited to Germany17.

Table 3 reports the estimates under the stationary Markov 
model for "old" and "new" plants in France and Sweden. Of 
particular interest is plant reliability for which one might expect 
two competing effects to be at work: although newer plants may be 
inherently more productive or reliable because of a more modern 
technical design, the data may also reflect startup problems since 
these plants have yet to undergo an initial "shakedown" period in 
which installation errors and inferior components are detected and 
rectified18. A third effect, namely overall improvements in 
managing nuclear power plants better over time, does not cause a 
bias since we observe plants only over a relatively small window,
i.e. the effect of calendar time does not matter. If one had 
complete plant histories, then it would be important to take into 
account that observations for older plants tend to occur earlier in 
time than observations for newer plants.

15 There were not enough data on recent reactors for this
analysis to be useful for Germany, Belgium, and Switzerland.

17 Because country-specific effects are of major importance, 
pooling observation across countries is inappropriate. Sweden has 
only 2 PWR, Switzerland only 2 BWR, and neither France nor Belgium 
have BWR.

18 A study by the Institute of Nuclear Power Operations (1984) 
shows that reactors which have been in operations for 3 years or 
more have a lower scram rate in any given year than new plants. 
McCormack and Gallaher (1982) calculate a mean number of 82 safety- 
related events per plant which are in a state of power ascension in 
1980 compared to 42 (62) per PWR (BWR) in commercial operation.
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As in the earlier discussion, I plot the nonparametric 
estimates of the cause specific survivor function for reliability 
and perform tests of homogeneity (figures 10 and 11, table 4). The 
null hypothesis of no differences in reliability between new and 
old plants cannot be rejected using nonparametric tests.

German BWR were much less reliable than German PWR (figure 
12), but this may be particular to Germany and the design problems 
with the 69 BWR series. While all pressurized plant systems are 
subject various degradation mechanisms, intergranular stress 
corrosion cracking (Danko and Stahlkopf, 1982) has been a major 
problem in the piping system of BWR and contributed to the lower 
reliability of BWR compared to PWR in Germany. Swedish BWR were 
less susceptible to stress corrosion cracking due to the choice of 
a stainless steel material with low carbon content (Pershagen, 
1989, p.380) than German or U.S. BWR. Table 5 also shows a 
substantial difference regarding refuel outage durations. However, 
this finding is caused by a few very atypical durations. Neither 
the plot of the nonparametric survivor functions (figure 13) nor a 
rank test (table 6) reveal a major difference between the 
distribution of refuel outage durations of PWR and BWR.

There are several plants representing two very different 
technologies. The first nuclear power plants constructed in France, 
many of which were permanently shut down in the 1980s, were Gas- 
Cooled Reactors (GCR). Canada has developed its unique design of
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Heavy Water Reactors (HWR) . In contrast to LWR which need to be 
shut down periodically for refueling, GCR and HWR can be refueled 
under load. While preventive maintenance and major repairs at LWR 
are performed during refuel outages as far as possible, planned 
repair outages assume this role for GCR and HWR. Therefore state 3 
(refuel outage) is replaced by state 3' (planned maintenance/repair 
outage) in table 7.
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Table 1: Stationary Markov Model: Estimated Mean Waiting Time in
Days (number of observations in parentheses)

Tran­
sition

Belgium France Germany Sweden Switzer­
land

0->l 110.27 75.39 252.46 87.94 476.05
(70) (531) (64) (197) (16)

0->2 321.67 232.75 577.05 666.30 1523.4
(24) (172) (28) (26) (5)

0->3 350.86 333.61 343.78 333.15 317.37
(22) (120) (47) (52) (24)

0->4 1929.7 727.88 4039.4 1082.7 7616.8
(4) (55) (4) (16) (1)

l-»0 5.45 4.84 3.42 4.08 3.46
(73) (552) (69) (204) (17)

2->0 6.16 4.49 7.79 9.85 2.42
(26) (189) (32) (30) (6)

3-»0 43.02 63.86 62.39 45.99 39.36
(23) (121) (56) (53) (27)

4-»0 1.30 4.09 3.71 0.85 0.29
(4) (56) (4) (16) (1)
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Table 2: Rank Tests of International Homogeneity
(X2-statistic, p-value)

comparison log rank test generalized
(degrees of freedom) Wilcoxon test

Reliability (0->l) 89.40 80.54
all countries (4) 0.000* 0.000*

Reliability (0-»l) 2.73 2.20
Belgium-Sweden (1) 0.099 0.138

Reliability (0-»l) 1.76 0.97
Sweden-France (1) 0.18 0.32

Reliability (0-»l) 7.06 5.35
Belgium - France (1) 0.008* 0.021*

Reliability (0-»l) 3.16 3.37
Germany - Switzerland 0.075 0.066
(1)

Reliability (0-»l) 10.63 6.49
Germany - Belgium (1) 0.001* 0.011*

Repair Duration (l->0) 2.56 3.92
all countries (4) 0.634 0.417

Refuel duration (3-»0) 89.40 80.54
all countries (4) 0.000* 0.000*

* significant at 5% level.
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Table 3: Stationary Markov Model: Estimated Mean Waiting Time in
Days (number of observations in parentheses)

Transition France, 
old plants

France, 
new plants

Sweden, 
old plants

Sweden, 
new plants

0->l 70.87 (256) 79.60 (275) 83.18 (150) 103.14 (47)

0-»2 201.59 (90) 266.95 (82) 623.81 (20) 807.92 (6)

0-»3 323.99 (56) 354.49 (64) 319.90 (39) 372.88 (13)

0->4 1008.0 (18) 591.62 (37) 959.71 (13) 1615.8 (3)

l-»0 5.99 (261) 3.81 (291) 3.30 (153) 6.43 (51)

2-*0 4.91 (96) 4.06 (93) 2.36 (23) 34.40 (7)

3-»0 63.97 (56) 64.00 (65) 46.42 (40) 44.66 (13)

4-»0 3.36 (18) 4.43 (38) 0.85 (13) 0.86 (3)

"Old" plants are defined as plants that started commercial 
operations between 1970 and 1980, "new" plants started commercial 
operation after 1980.
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Table 4: Rank Tests of Homogeneity for Different Plant Vintages
(X2-statistic, p-value)

comparison 
(degrees of freedom)

log rank test generalized 
Wilcoxon test

Reliability (0-»l) 0.94 1.34
France new vs. old 0.332 0.247
(1)

Reliability (0-»l) 0.73 1.02
Sweden new vs. old 0.392 0.313
(1)

"Old" plants are defined as plants that started commercial 
operations between 1970 and 1980, "new" plants started commercial 
operation after 1980.
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Table 5: Stationary Markov Model: Estimated Mean Waiting Time in
Days for West German plants (number of observations in parentheses)

1/A±j 0-»l 0-»2 0-»3 0->4 l-»0 2->0 3-»0 4->0

PWR 393.3
(27)

816.9
(13)

312.3
(34)

10619.0
(1)

4.19
(30)

14.48
(14)

50.27
(40)

1.29
(1)

BWR 149 .7 
(37)

369.2
(15)

426.0
(13)

.

1846.1
(3)

2.82
(39)

2.59
(18)

92.68
(16)

4.51
(3)

Table 6: Rank Tests of Technological Homogeneity, West German
Plants (x2-statistic, p-value)

comparison 
(degrees of freedom)

log rank test generalized 
Wilcoxon test

refuel duration (3-»0) 1.51 0.44
BWR - PWR Germany 0.218 0.505
(1)

Reliability (0-»l) 10.53 8.72
BWR - PWR Germany 0.001* 0.003*
(1)

* significant at 5% level.
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Table 7: Different Technologies: Canadian HWR and French GCR
Estimated Mean Waiting Time in Days for Stationary Markov Model
(number of observations in parentheses)

1 / ^ France GCR Canada old Canada new Canada all

0->l 76.44 (79) 116.73 (183) 94.11 (135) 107.99 (318)

0-*2 1006.5 (6) 504.28 (25) 399.98 (16) 463.58 (41)

0-*3' 232.27 (26) 573.05 (22) 355.53 (18) 475.17 (40)

0-*4 506.20 (11) 525.29 (24) 266.65 (24) 395.97 (48)

l-*0 7.56 (81) 7.42 (111) 4.45 (73) 6.24 (184)

2->0 35.53 (6) 7.02 (26) 1.78 (18) 4.87 (44)

3 '->0 60.86 (26) 33.46 (24) 28.01 (18) 31.16 (42)

4-»0 4.84 (12) 7.25 (24) 6.57 (26) 6.89 (50)
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Figure 2: Survivor Function: Uptime until Equipment Failure
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Figure 3: -Ln(Survivor Function): Uptime until Equipment Failure
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Figure 4: Survivor Function: Downtime for Refueling
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Figure 5: Survivor Function: Downtime for Repair
(Equipment Failure)
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Figure 6: Density Plot: Downtime for Repair
^ (Equipment Failure)
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Figure 7: Density Plot: Downtime for Refueling
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Figure 8: Density Plot: State 2
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Figure 9: Density Plot: State 4
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2.2 Testing the renewal assumption
An assumption implicit in the preceding section as well as in 

other descriptive models of plant operations using duration 
analysis (Rothwell, 1989, Rothwell and Jensen, 1990, David, 
Rothwell, and Maude-Griffin, 1991) is that successive spells (the 
interval between two transitions) are independent. This is a 
questionable assumption which should be tested. Uptimes can be 
ended by a number of different causes (competing risks) and the 
plant manager's decision will generally not be independent of the 
condition of the plant19. Thus a behavioral model describing the 
relationship between the occurrence of planned and unplanned 
outages is desirable and will be developed in later chapters. 
However, the semi-Markov model and many behavioral models impose 
restrictions that can be tested without having to assume particular 
parametric forms for the distribution of spell durations.

The classic maintenance model in the field of operations 
research has the central assumption that every action regenerates 
the system completely, i.e. resets the hazard function20. In a 
stationary environment where the technology and the operator's 
preferences do not change, this assumption implies that both the

19 The question may be less urgent for outage durations because 
outages always end with a return to the run state.

20 Pierskalla and Voelker (1976) and Valdez-Flores and Feldman 
(1989) review the large literature on maintenance models for 
stochastically deteriorating systems. An early model that 
distinguishes between two types of action is the minimal repair 
model of Barlow and Hunter (1960).
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distribution of failures and the distribution of censoring times 
(preventive maintenance/refueling) are stationary, i.e. 
statistically we are dealing with a semi-Markov model. Two such 
models in economics are Rust (1987) and Ryu (1990)21.

Rank methods, briefly discussed in the previous section, can 
be an appropriate technique to test this assumption. These tests 
even work if the model is not completely stationary, for example, 
when energy prices or climatic conditions (plants are not refueled 
in the winter because of high electricity demand) influence the 
operators decision to take a plant down, as long as this source of 
nonstationarity does not systematically bias one sample. A 
systematic bias is unlikely since approximately the same number of 
observations from each year are contained in each sample in a 
comparison between two spells of different cycles. Among the 
countries in the data set, only France and Sweden have enough 
observations to make a non-parametric test of this kind worth 
considering. For France, it is possible to consider the two 
subsamples "old" and "young" plants. Observations on "young" 
plants— plants beginning commercial operation after January 1, 
1981— are complete, the observations for "old" plants— plants 
beginning commercial operation before 1981— are incomplete for the 
years before 1981. The first operating cycle in a nuclear power 
plant is known to be different from the following cycles, and I

21 Rust only considers one type of event (engine replacement), 
whereas Ryu considers planned (preventive maintenance) and 
unplanned (repair) events.
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therefore only used observations following the first refueling 
outage after 1/1/198 1 22.

The first null hypothesis tested is the one implied by the 
complete regeneration model/ e.g. semi-Markov models or the 
behavioral models of Rust or Ryu:

H0a: all operating spells have the same distribution

Table 8 reports the results of the test, which rejects the 
hypothesis H0a.

A hypothesis weaker than complete regeneration at every event 
is regeneration during refuel outages. This statistical assumption 
is much more plausible than the assumption of regeneration at every 
event: utilities attempt to return the plant to the running state 
as quickly as possible in the case of an unscheduled event and such 
outages often last only a few hours. Repair and maintenance 
performed during such an outage is unlikely to affect more than a 
very small part of the complex system. During refuel outages, 
however, we observe extensive maintenance and inspection activities 
in which sometimes more than one thousand people, often from 
outside the plant, are involved. One testable hypothesis implied by 
the assumption of regeneration during refueling is the following:

22 For old plants, this also avoids the problem of left 
censoring (considering the fuel cycle as one unit of analysis).
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H0b: the operating spell in each cycle 
has the same distribution

The samples compared are the first spell in one of four cycles. The 
null hypothesis in this case is not rejected, see table 9. Of the 
36 possible two-way comparisons of cycles 1,2,3,4, for Swedish and 
new and old French plants and log-rank and Wilcoxon tests, only one 
rejects the hypothesis at the 10% level (log rank test, France old, 
cycles 2 vs 3). Testing all 4 samples simultaneously leads to one 
rejection at the 10% level (log rank test, Sweden).

Of course, this test has less power than the test of the first 
hypothesis because there are fewer observations. In order to assess 
the loss of power, I tested the first hypothesis again, but only 
used observations from cycle 1 for spells 1 and 2 and from cycle 2 
for spells 3 and 4. This gives a comparable number of observations. 
Compare table 10 with table 8 which used all observations. It 
appears that the failure to reject hypothesis H0b was not simply due 
to the loss in power.

As mentioned before, the rank tests may not be powerful if 
distributions are different, but one is not consistently larger 
than the other. However, this does not appear to be the cause for 
not rejecting the hypothesis either, as may be seen from figure

52
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1423. Thus we may conclude that the assumption of regeneration 
following refuel outages is consistent with the empirical evidence 
and that fuel cycles are a relevant unit of analysis. However/ the 
regeneration assumption at every event has been rejected and this 
raises the question: what is the relationship between successive 
failures? This question is taken up again in chapter 3 in the 
development of a parametric model.

23 Only two representative plots are shown. I found only one 
crossing of survivor functions (new French plants, cycle 2 vs. 
cycle 4).
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Table 8: Rank Tests of H0a (x2-statistic, p-value)

comparison log rank test generalized
(degrees of freedom) Wilcoxon test

France old 15.44 16.88
spells 1-7 (6) 0. 017* 0.010*

France old 6.84 6.73
spells 1 vs 3 (1) 0.009* 0.010*

France old 0.01 0.69
spells 2 vs 4 (1) 0.92 0.407

France new 7.31 9.48
spells 1-7 (6) 0.293 0.148

France new 1.21 2.96
spells 1 vs 3 (1) 0.271 0.086

France new 4.08 4.58
spells 2 vs 4 (1) 0.043* 0.032*

Sweden 14.83 24.47
spells 1-7 (6) 0.022* 0.000*

Sweden 3.58 8.98
spells 1 vs 3 (1) 0. 058 0.003*

Sweden 1.51 3.82
spells 2 vs 4 (1) 0.220 0.051
significant at 5% level.
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Table 9: Rank Tests of H0b (x^statistic, p-value)

comparison log rank test generalized
(degrees of freedom) Wilcoxon test

Sweden 6.47 3.96
cycles 1-4 (3) 0.091 0.266

Sweden 1.32 0.95
cycles 1 vs 3 (1) 0.250 0.331

Sweden 2.39 1.42
cycles 2 vs 4 (1) 0.122 0.233

France new 2.93 2.92
cycles 1-4 (3) 0.402 0.403

France new 2.17 1.41
cycles 1 vs 3 (1) 0.141 0.235

France new 0.11 0.55
cycles 2 vs 4 (1) 0.738 0.458

France old 2.37 2.54
cycles 1-4 (3) 0.500 0.467

France old 0.03 0.68
cycles 1 vs 3 (1) 0.87 0.410

France old 0.46 0.01
cycles 2 vs 4 (1) 0.498 0.92
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Table 10: Power Test

comparison 
(degrees of freedom)

log rank test generalized 
Wilcoxon test

France old 1.96 3.81
spells 1 vs 3 (1) 0.162 0.051

France old 0.30 0.19
spells 2 vs 4 (1) 0.58 0.660

Sweden 0.02 0.07
spells 1 vs 3 (1) 0.893 0.786

Sweden 3.17 2.62
spells 2 vs 4 (1) 0.075 0.105
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Figure 14: Do Survivor Functions Cross?
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2.3 Continuous production processes and linear regression
techniques

Many previous authors (e.g. Joskow and Rozanski, 1979, Lester 
and McCabe, 1988, Krautman and Solow, 1990) have analyzed power 
plant operations in a linear regression framework, usually by 
regressing availability or capacity factors on some variables of 
interest. A critical review of this literature can be found in 
David et al. (1988, Appendix E), which suggests that ignoring the 
dynamics of production may lead to very misleading results. This 
will be demonstrated formally in the present section.

Consider a simple two state Markov model24. This is sufficient 
to show analytically the inconsistency of the regression framework 
with a continuous production process.

Figure 15: A Two-State Model

UP DOWN

24 David in appendix B of David et al. (1988) considers such 
a model.
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The point availability A(t) is the probability that the plant 
is up at time t. The interval availability therefore is defined as

t*T
A* (t, T) : =-i J  A(u) du (12)

c

and the asymptotic, long-term, or steady-state availability

t
A*„: =lim—  [a (u) du (13)t~ fcJ

The state space S has two states, namely up and down, and the 
transition between up and down is assumed to follow a pure Markov 
jump process. The constant failure rate X is the hazard of a 
transition from up to down, i.e. the probability density function 
for operating spells is that of an exponential distribution:

f(u)=Xe-Xu ( I 4 )

Similarly, there is a constant repair rate v describing the hazard 
from down to up. Solving for the probability of being in any one 
state is a simple exercise in Markov models (e.g. Hoel, Port, and 
Stone, 1972, Ch.3). In terms of availability, we obtain the 
differential equation

c*Aj-tL=v(l-A(t))-XA(t)  (15)dt
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Using the integrating factor ex*v and the initial condition that the 
plant begins operation at time 0 in the up state (A(0) =1), the 
formula for availability becomes

A(t)=-r^- + -r^-e-(*+v>t (16)A.+v A.+V

This yields the interval availability

A* (t,T) =— ■— + - ^ ~ r v ~ [ 1 - e ' (A,+v>*1 ( 17)>.+v (X+v)2T

and the asymptotic availability

A V t 1  (18)X+v

Now consider how the existing regression literature deals with data 
generated by continuous production processes. The most recent study 
by Krautmann and Solow (1990) estimates a linear regression model 
of the following form, using yearly data on individual plants in 
the U.S.25

-^-=a/Zi+$/Zie~t+eit (19)
Ait

25 The usual metric of learning in all the regression papers 
are changes in the capacity factor. The capacity factor is not an 
ideal measure since it also measures other economic effects. Joskow 
and Rozanski (1979) are aware of this problem, but they claim that 
"differences in capacity factors across plants due to 'load 
following1 is not a problem." The availability factor would 
nevertheless be a more appropriate measure in these papers.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

where Ait is the actual interval availability of plant i in [t-l,t], 
or and 13 are vectors of parameters to be estimated, Z± is a vector 
of characteristics corresponding to plant i, and e± are iid random 
variables with mean zero. For the present purpose it is enough to 
consider a panel of identical plants =1) observed over a finite 
time period [0,T] when the data is generated by the stationary
two-state model with hazards v and A. If the "reduced" form (19) 
were appropriate, the coefficient measuring learning should
indicate no learning effects (R=0). However, this is not the case: 
asymptotically (as the number of plants goes to infinity), the
estimate of 13 converges to

T , - T T
t T .  — --E e-'E i--

T T \
t J) e~2t- ^2 e~t
C=1 \t=l ,

which is never zero unless the interval availability A*(t-l,t) does 
not depend on t. For a numerical example, let A=.5 and v=l, which 
implies an asymptotic availability of 67%. For a 2-year panel, the 
probability limit of 13 is -1.10, for a 10-year panel, it is -0.81, 
etc.. Thus the regression framework leads to the "discovery" of a 
strong negative relationship between experience and availability.

Joskow and Rozanski (1979) estimate "learning" both by 
operators and by suppliers of nuclear power plants. They assume the 
existence of an "asymptotic capacity factor" which is approached by 
an increasing annual plant capacity factor ("learning during
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operations"). Suppliers build better plants over time, i.e. plants 
with higher asymptotic capacity factors ("learning in production") . 
Ignoring the effect of other covariates such as vintage, their 
model is of the form:

l n ^ )  =a+-^-+ei (21)
X i

where Xi is the cumulated output of plant i up to but not including 
the year for which an average availability factor At was observed. 
In the absence of learning effects, this model implies that XA and 
A.̂ are statistically independent. But this is not the case in a 
continuous process. A simple example with discrete duration
distributions should suffice to point out the problem, an analytic
derivation of the relationship between X and A is rather involved
for continuous distributions. Consider a large number of plants 
that have been in operation for two periods, i.e. X is experience 
measured as availability in period 1, A is the availability in 
period 2. Plants start operation in the up state, up times have a 
duration of.5 with probability .5 and of 1 with probability .5, 
downtimes always last .5. Although this is a stationary technology 
and no learning occurs, B estimated by OLS in equation (21) 
converges in probability to .35.

Why do these regression models fail to recognize the
stationarity of the underlying technical process? The reason is 
that initial conditions influence the results of regression
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analysis. The foregoing calculations assumed that observations 
begin with a startup (as is the case for the data set used in this 
study). On the other hand, assuming that observations start at the 
beginning of a downtime changes the expected value of the estimated 
parameter measuring "learning". Clearly, this is a highly 
unsatisfactory situation: whether one finds that availability
increases with experience or decreases with experience depends on 
how the data is collected.

Spurious findings can be avoided by using models that allow 
for the dynamics of the process. Standard duration and failure time 
models, used by Rothwell (1989), Rothwell and Jensen (1990), or 
David, Rothwell, and Maude-Griffin (1991), for example, are not 
sensitive to starting conditions and recognize the stationarity of 
the technology in this environment. Note that the sensitivity of 
regression analysis results to starting condition is a more 
fundamental problem than the criticism in David et al., which 
considers spurious regression results due to the possibility of 
unobserved heterogeneity (essentially a missing variable problem) 
and the corresponding correlation of experience and availability.
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2.4 Estimating learning in a reliability growth model
The previous section showed that models which fail to address 

the dynamic aspects of production may give rise to spurious 
results. This section suggests a different model to estimate 
learning effects which complements the line of research in several 
regards. First of all, the focus is on reliability improvements 
over time, measured by the hazard of experiencing emergency 
shutdowns, rather than on plant availability studied by previous 
researchers26. Secondly, this section attempts to disentangle the 
effects of different possible causes of reliability improvements 
such as weeding out installation or design errors, "spill over" 
effects from the operation of other plants, and improvements due to 
experience as measured by plant age or total output. Thirdly, data 
generated by stochastic processes comes in two forms: duration 
between events and event counts. The duration between events has 
been analyzed in the preceding sections, here I use count data on 
unplanned shutdowns to investigate changes in plant reliability.

This section qualifies the results of section 2.2 in which the 
renewal assumption following refuel outages could not be rejected. 
I find that new plants beginning commercial operations display 
"learning" effects in that the reliability increases. This 
introduces an element of nonstationarity apparently inconsistent 
with renewal during refueling. In other words, plant time, not just

26 The use of the words "reliability" and "availability" here 
is consistent with the engineering literature (e.g. Lewis, 1987). 
In the economics literature, the word "reliability" has 
occasionally been used incorrectly to denote "availability" (e.g. 
Joskow and Rozanski, 1979).
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cycle time, matters. However, note that the model in this section 
implicitly assumes a strict Markov model for uptime durations 
within each fuel cycle, which is only an approximation to a more 
complex model (chapter 3). On the other hand, the test of the 
renewal assumption in section 2.2 used the duration of the first 
spell and thus may not have picked up effects occurring later in 
the fuel cycle. The question of reliability growth is mainly of 
interest for the first years of plant operations, more experienced 
plants do not display similarly statistically significant effects 
and the renewal assumption at the beginning of a fuel cycle appears 
to hold without qualifications for them.

The reliability of a plant describes how likely the plant is 
to experience an unplanned shutdown (the intensity or hazard of a 
shutdown), generally an equipment failure leading to a scram. 
Reliability is therefore closely associated with plant safety, an 
important performance goal in nuclear plant operations. Because 
emergency shutdowns are exits from the running state, a statistical 
model of reliability could alternatively be formulated in terms of 
uptime durations interrupted by both planned and unplanned outages. 
Unplanned outages have very short average durations. Their overall 
contribution to availability is therefore minor (table 20, Chapter 
4). Thus the model sheds light on a neglected aspect of plant 
performance. Chapter 4 will combine both aspects of plant 
performance (reliability and availability) in a unified behavioral 
model.
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The dependent variable of interest is the number of unplanned 
shutdowns during an operating cycle (the time between two 
successive planned refuel outages). The length of operating cycles 
and the uptime within a cycle (shutdowns can only happen when the 
plant is up) differ from cycle to cycle and this sets the model 
apart from previous economic applications of event count data which 
had identical durations for all observations (Hausman, Hall, and 
Griliches, 1984, Arora and Gambardella, 1990). The data set 
analyzed here contains information on 164 fuel cycles of nuclear 
reactors which began commercial operations in December 1980 or 
later in five European countries27.

Most studies of learning curves or progress function consider 
plant specific learning as a function of a single measure of 
experience. However, plant specific experience could be measured in 
several ways, all of which may be important. The number of previous 
unplanned shutdowns, for example, is relevant when unplanned 
shutdowns are caused by rectifiable installation and design errors. 
A general assumption in software reliability models (e.g. Jelinski 
and Moranda, 1972, Musa, 1975), is that program crashes lead to the 
detection and permanent removal of a bug, thus improving the 
program's reliability. By analogy, the number of previous fuel 
cycles matters if major retrofits (or "bug" removals) can only be 
performed during refuel outages; total up time in nuclear power

27 See table 11 for definitions of variables and summary 
statistics.
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plants, which are typically baseload plants, provides a measure of 
output -- often equated with experience. Similar arguments could be 
given for plant age, total unplanned downtime, or total downtime 
(plant age minus total uptime). In addition, reliability 
improvements may not only be a function of plant specific 
experience but also of total experience within a country or within 
a cluster of reactors at one site. For each of the plants in the 
sample, I constructed all the measures of plant specific experience 
just mentioned. Because there is little information on plants that 
came on line before 1981, only two variables could be constructed 
to test for spill-over effects: reactor years for a multiple unit 
site and reactor years for a country.

Unplanned or emergency shutdowns occur randomly and 
independently in time while the plant is running. Furthermore, this 
intensity differs between plants and fuel cycles, but is constant 
within one fuel cycle28. There cannot be any unplanned shutdowns 
during outages and the intensity is zero while the plant is down. 
Assuming that major changes in the intensity of shutdowns occur 
only between fuel cycles is not unreasonable as a first 
approximation: many substantial changes affecting reliability can 
only occur during the long downtimes for planned refueling and 
maintenance and they cause discrete changes in reliability, for 
example

28 This assumption ignores the possibility of regular changes 
within a fuel cycle (see chapter 3) and is only made to investigate 
the broader question of reliability improvements over time.
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- the installation of new (and probably better and more reliable) 
hardware
- the installation of new monitoring devices (with the aim of 
improving the control of the production process).

These assumptions give rise to a Poisson model. Let A(i,xln) 
denote the intensity of unplanned outages in the i'th fuel cycle 
for plant n where xin are covariates. The contribution of an 
observed fuel cycle with k unplanned outages and a total uptime of 
T to the likelihood function is

L(k)= -e (2 2 )Jc!

The intensity of unplanned outages is parametrized as

l^ e x p U ia P )  (23)

The gradient and Hessian of the log likelihood function are

dL =E E [kx^-x^T^exp Uinp) ]api V V
(24)

=?  £  [ - ^ i A i n ^ e x p  u i np) ]

Equation (24) shows that the log likelihood function is 
globally concave and thus all standard maximum likelihood 
algorithms work very well.
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Table 12 lists results for the Poisson model for various 
subsets of regressors. The first goal was to determine which of the 
plant specific measures of experience are most important. If only 
one variable measuring experience is included, as in many previous 
studies, then the best one in terms of increasing the likelihood 
function is total up time (SUMUP, model A). Both the number of the 
fuel cycle (CYCLE) and plant age (AGE, model B) perform well too, 
but not the number of previous outages (SUMFAIL) or total downtime 
(SUMDOWN). The coefficient is negative, thus indicating that more 
experience is correlated with higher reliability. An argument that 
might be raised against total up time as a regressor is its 
correlation with plant quality if there is uncontrolled plant 
heterogeneity. In particular, a less reliable plant has less uptime 
that a more reliable plant of the same age. But because the 
contribution of unplanned outages to unavailability is small, this 
effect is likely to be minor if it exists at all. Nevertheless, all 
regressions were done twice to avoid spurious results: once with 
the unquestionable exogenous variable AGE and once with SUMUP. As 
in models A and B or models E and F, the difference in the 
likelihood between the using either SUMUP or AGE as regressors is 
relatively small (although the models with SUMUP have a larger 
likelihood), the magnitude of all other coefficients and standard 
errors remains virtually unchanged, and the predicted effects of 
SUMUP and AGE are always proportional to each other, negative, and 
statistically significant (at 5% or 1%, depending on the number of 
additional regressors). The correlation between SUMUP and AGE is
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very high and if both are included simultaneously, one of the 
coefficients becomes positive and both coefficients become 
statistically insignificant (at 10% or 5%, depending on the number 
of regressors, see model C for a typical example). If CYCLE is 
included the coefficient of SUMUP changes signs, otherwise the 
coefficient of AGE changes signs. Although CYCLE has a negative 
coefficient if neither AGE nor SUMUP are included, the sign can 
change when AGE or SUMUP are added. The reason for this is quite 
clear: SUMUP, AGE, and CYCLE are good measures of experience, but 
they are highly correlated and the effects on reliability are 
unlikely to be linear.

Using interaction terms of experience and country specific 
dummies allows to test whether learning paths differ across 
countries. There are very substantial differences in the levels 
(all country dummy variables have negative coefficients, indicating 
that France has the least reliable plants), but the null hypothesis 
that reliability improvements are the same in all countries cannot 
be rejected29. Furthermore, the results are very similar if only 
data on French reactors is selected (the country with the largest 
number of observations). For example, compare models A' and B', 
which only use observations on French reactors, with models A and 
B.

Although both plant age and the number of the fuel cycle are

29 Under model B (experience is measured by plant age), the 
mean log likelihood with interaction terms is -2.1814. The 
likelihood ratio statistic, asymptotically Chi-squared distributed 
with 4 degrees of freedom, has a value of 3.13.
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important variables by themselves, the second most important 
variable once total up time is included is country specific 
experience (EXPER, for example, model D) . The coefficient is 
significantly negative (at the 1% level for almost all 
specifications) and indicates the importance of learning from the 
experience in other plants. Site specific experience (EXPERSITE) 
may or may not be important as an additional variable. The negative 
coefficient indicates that there are improvements associated with 
the experience of other plants at one site in addition to their 
contribution to country experience. Although the t-statistic is 
larger than one in absolute value, it was not significant at the 
10% level for any specification. Not important are total downtime 
or the number of previous outages; the null hypothesis that they 
are uncorrelated with reliability cannot be rejected for any model 
estimated. This does not exclude the possibility that an error 
detection model is useful to model reliability changes within a 
fuel cycle which is investigated in the next chapter.

Larger plants are less reliable than smaller plants regardless 
of learning effects. The coefficient on capacity (CAP) is 
significantly negative (1%) even after controlling for plant age 
and experience30. Models E and F contain additional quadratic terms 
to allow for nonlinear effects of experience. None of the results 
discussed are affected.

30 This is conventional wisdom, but evidence so far had been 
based on descriptive statistics and was therefore not convincing: 
more recent plants tend to be larger and the results show that 
reliability improves.
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It is unlikely that the observed covariates capture all the 
differences between plants and fuel cycles. Fixed and random 
effects models can deal with this problem of unobserved 
heterogeneity, although the fixed effects model is not useful for 
this question because many plants contribute only one or two 
observations. However, before introducing unobserved heterogeneity 
in may be important to reconsider the implicit assumption of 
stationarity within the fuel cycle. This is done in chapter 3 which 
investigates time dependence of the intensity function of unplanned 
outages within the fuel cycle, as well as the dependence of 
downtime durations on observed plant characteristics.
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TABLE 11: Definitions of Variables

variable name definition mean
(std.dev)

FAIL number of unplanned shutdowns in 
cycle (except exogenous causes) 3.63

(3.12)
CYCLE number of cycle 2.65

(1.49)
UPTIME total up time in cycle (months) 9.57

(4.32)
DOWNTIME total down time in cycle 

(months)
0.62
(1.28)

SUMUP total up time during life time 
(months)

17.20
(15.93)

SUMDOWN total unplanned down time during 
life time (months)

1.56
(2.46)

SUMFAIL total number of unplanned 
outages during life time (except 
exogenous causes)

8.09
(8.83)

AGE age of plant at beginning of 
cycle (years)

1.88
(1.70)

DATE calendar date of beginning of 
refueling

84.66
(1.65)

EXPER experience with commercial PWR 
reactors in country at beginning 
of cycle (reactor years)

80.03
(38.82)

EXPERSITE only for multiunit sites: 
experience at plant site 
(reactor years)

8.08
(10.52)

CAP generating capacity in 1000 MW 0.96
(0.13)

BWR = 1 if Boiling Water Reactor 
= 0 otherwise

0.17
(0.38)

SITE = 1 if several units on site 
= 0 otherwise

0.93
(0.25)

B = 1 if Belgian reactor 
= 0 otherwise

0.05
(0.23)

F = 1 if French reactor 
= 0 otherwise

0.70
(0.46)
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D = 1 if German reactor 
= 0 otherwise

0.08
(0.27)

S = 1 if Swedish reactor 
= 0 otherwise

0.15
(0.36)

CH = 1 if Swiss reactor 
= 0 otherwise

0.02
(0.13)

164 observations for all countries (114 observations for France)
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Table 12: Reliability Growth Model - Results

variable A B C D

mean logl -2. 1778 -2.1909 -2.1672 -2.0579
Constant -0.5109

(0.0602)
-0.5116
(0.0616)

-0.5418
(0.0629)

-2.9297
(0.4794)

CYCLE 0 .2199 
(0.1528)

SUMUP -0.0192
(0.0030)

-0.0566
(0.0202)

-0.0460
(0.0216)

AGE -0.1689
(0.0270)

0.3463
(0.1843)

0 .2251 
(0.2068)

EXPER -0.0072
(0.0016)

EXPERSITE -0.0102
(0.0087)

CAP 2.6805 
(0.4830)

BWR -0.0306
(0.2881)

B -0.2829
(0.1753)

-0.3137 
(0.1757)

-0.2108
(0.1797)

-0.3686
(0.1982)

D -2.0041
(0.3200)

-2.0307
(0.3202)

-1.9358
(0.3221)

-2.6532
(0.3674)

S -0.4633
(0.1331)

-0.4812
(0.1331)

-0.4332
(0.1338)

-0.4727
(0.2437)

CH -0.4748
(0.3814)

-0.4831
(0.3815)

-0.4383
(0.3819)

-0.5796
(0.4682)

164 observations for all countries (114 observations for France)
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Table 12: Reliability Growth Model - Results, continued

variable E F A'
France only

B'
France only

mean logl -2.0566 -2.0679 -2.3736 -2.3945
Constant -2.8163

(0.5164)
-2.6564
(0.5289)

-0.5055
(0.0627)

-0.5133
(0.0641)

CYCLE 0.3043
(0.1418)

0.1441
(0.1489)

SUMUP -0.0372
(0.0173)

-0.0197
(0.0032)

SUMUP~2 0.1922 
(0.2074)

AGE -0.1833 
(0.1538)

-0.1677
(0.0294)

AGE^2 15.72
(18.58)

EXPER -0.0102
(0.0049)

-0.0100
(0.0050)

EXPERT 0.0186
(0.0320)

0.0166
(0.0324)

EXPERSITE -0.0078
(0.0084)

-0.0122
(0.0087)

CAP 2.5996
(0.4939)

2.6040
(0.4961)

BWR -0.1000
(0.2814)

-0.1284 
(0.2826)

B -0.4296 
(0.1905)

-0.4476
(0.1946)

D -2.5847
(0.3740)

-2.6219
(0.3725)

S -0.4584
(0.2477)

-0.4358
(0.2448)

CH -0.5190
(0.4694)

-0.4844
(0.4680)

164 observations for all countries (114 observations for France)
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3. Choosing between competing duration models: an analysis of up- 
and downtimes

The previous chapter described the production in nuclear power 
plants in Europe as a stochastic process with alternating "up" and 
"down" times. A difficulty discovered in chapter 2, and which will 
be demonstrated in the simulation study in section 3.3, is that 
actual data exhibits more structure than consistent with Markov 
models. This chapter probes deeper into the structure by 
considering theoretical models of complex production systems, such 
as nuclear power plants, by developing a detailed parametric
representation individual spell durations, and by comparing the 
properties of parametric models with actual data through
simulations. It reaches the following main conclusions:

a) Downtime durations
In the representation of individual plant data on the duration 

of outages, it is quite difficult to find models that pass
goodness-of-fit tests even when one distinguishes among the main 
outage causes. It is not sufficient to choose a parametric hazard 
model that allows for duration dependence in the hazard rate of 
terminating an outage, such as the Weibull model. Unobserved
heterogeneity is substantial, in particular where outages caused by 
equipment failures are concerned. Unless more specific information 
becomes available, such as a technical description of the type of 
equipment failure, this heterogeneity needs to be controlled by

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

random coefficient models. The exponentiated quadratic polynomial 
is the best baseline hazard function for durations of equipment 
failure outages. By contrast, the Weibull distribution performs 
well in describing the observed pattern of variability in refuel 
durations.

b) Uptime durations
Standard failure time models are unsatisfactory as a 

statistical description of the durations of sequential operating 
spells in nuclear power plants. The "process" model introduced in 
this chapter as an alternative to the "failure time" model of 
duration analysis is theoretically and empirically more appealing. 
Its theoretical advantage is that it can describe the sequence of 
failures of repairable systems that can be restored to a 
satisfactory operating condition without having the properties of 
a completely new system. The likelihood function derived here 
corresponds to a nonstationary point process with regressors. The 
estimation in the chapter goes one step further by taking into 
account that events (unplanned outages) are not of zero durations.

c) Simulations
Simulating plant operations using the process model developed 

in this chapter gives rise to a sequence of up- and downtimes which 
closely resembles observed sequences. The time paths implied by the 
Markov model of chapter 2 are, by contrast, not consistent with the 
data. In particular, the point availability converges too quickly
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to its stationary value.

3.1 Modeling Downtime Durations
Since nuclear power plants are mainly used to cover base load 

requirements, the availability of a station is a main determinant 
of its productivity. Availability itself is a direct result of both 
planned and unplanned outages. The probability of outages is 
governed by the reliability of the plant, analyzed in the next 
section (3.2). In general, econometric estimation is much simpler 
for outage durations than for run durations because there are 
essentially no censoring or competing risk problems (see section 
2.1). Since little is known about the statistical properties of 
nuclear power plant operations, it is important to compare the 
results of different distributional specifications, which is the 
purpose of this section.

A detailed analysis of individual spells, giving rise to much 
more complex distributions for aggregate data than the descriptive 
models of chapter 2, uses regression type duration models with and 
without unobserved heterogeneity. A sensitivity analysis is 
important because estimates may not be robust and conclusions based 
on restrictive parametric models may be misleading. Downtime 
durations in U.S. nuclear power plants have been studied by 
Rothwell and Jensen (1990), who analyze the impact of the 
information structure in the plant on outage durations under the 
assumption of a Weibull proportional hazard model. In contrast to 
the U.S., where a large number of utilities with vast differences
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in size and technological capabilities operate nuclear power 
plants, plant management in Europe does not display much variation 
within a country31. Therefore, the choice of regressors here 
focuses on the plant history and is complementary to the analysis 
of Rothwell and Jensen.

The states and possible transitions in the data have been 
graphed in chapter 2, figure 1. There is one run state (state 0) 
and a number of outage states. The most important "down" states, 
both in terms of occurrence and total time spent in these states, 
are states 1 and 3 (unplanned outage due to equipment failure and 
planned refuel outage), and the sojourn times in these two states 
are investigated in detail here. The major portion of 
unavailability is due to planned outages, generally refuel outages. 
For example, from 1984 to 1986, approximately 78% of 
nonavailability time of plants constructed by the German company 
KWU was due to refueling and inspection outages, 14% was due to 
backfitting measures and repairs that prolonged refueling outages 
and only about 8% was due to unplanned shutdowns (Brettschuh, 
1988). Since the average availability in this time period has been 
85.2% for PWR and 86.5% for BWR manufactured by KWU, unplanned 
downtime durations (but not necessarily the occurrence of unplanned 
outages) are almost negligible from an economic point of view. Some 
descriptive statistics and density plots were given in chapter 2.

31 But because differences between countries may be substantial 
I chose not to pool data from different countries.
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One important issue is the dependence of durations on the 
plant history and exogenous regressors. Path dependence invalidates 
the use of many non- or semiparametric methods that rely on some 
form of (semi-) Markov assumption32. A typical form of path 
dependence is occurrence dependence where the hazard for the k'th 
duration depends on the number of previous spells. This is a form 
of dependence that often appears in fertility studies which 
consider repeated events of the same kind (here we have different 
types of events). For example, David and Mroz (1989) include the 
number of boys and girls (among many other variables) in analyzing 
birth intervals.

The effect of covariates are introduced in this section in the 
standard multiplicative form (proportional hazard) where the 
intensity of leaving the down state at time t is

l(t) =A0(t)exp(x/P) (25)

The main effects considered are:
a) the number of the spell in the fuel cycle (e.g. how many outages 
have occurred since the last refueling)
b) the duration of the last up spell
c) the total up time since the last refuel outage
d) the last refuel duration
e) the age of plant (measured in time since its first commercial

32 The term "path dependence" as used here refers to higher
order statistical dependence in the transitions. A broader meaning 
has been attached to this term in economics (Arthur, 1989, David, 
1985, 1988).
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operation)
f) the capacity in MW (not history dependent)
g) a dummy variable for BWR (not history dependent).

A number of different baseline hazard A0(t) specifications are 
estimated:
a) exponential hazard

A0(t)=A (26)

b) Weibull hazard

A0 (t) =Ap tp_1 (27)

c) Gompertz hazard

A0(t) =A.exp(y1fc) (28)

d) exponentiated quadratic polynomial

A,0 (t) =lexp(Yit+y2t2) (29)

In addition to the effect of covariates, one has to consider 
the possibility of unobserved heterogeneity (e.g. omitted 
variables) which would bias inference, especially about the shape 
of the hazard function. Unobserved heterogeneity is modeled as a 
scalar random variable with either a gamma or a discrete 
distribution, e.g. for the gamma mixing model, the parameter A is
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a random variable with density

f a ) = T 7rr*r~le’“* (30)

If a constant term is included as a regressor, the gamma 
distribution is reparametrized to have mean 1 and only the variance 
is estimated.

The assumptions of the proportional hazard model are not 
innocuous (e.g. hazards for different subpopulations cannot cross), 
but I did not encounter obvious violations of this assumption when 
performing a preliminary nonparametric analysis with stratified 
subsamples. As discussed in section 3.2, however, the proportional 
hazard model in its failure time formulation is not adequate to 
analyze uptime durations and to investigate plant reliability.

In a fertility study, Heckman and Walker (1987) found that no 
model passed their goodness-of-fit criteria and the commonly found 
nonrobustness of estimates may be due to an inadequate fit of any 
model to the data. Surprisingly, goodness-of-fit tests are rarely 
reported in duration analysis (David, Mroz, and Wachter, 1985, 
being a notable exception). Given the results of Heckman and 
Walker, I generally use some chi-square test using k discrete time 
intervals to check the adequacy (or rather inadequacy) of models in 
addition to plots of predicted and actual frequencies. In the 
presence of censoring, the classical goodness-of-fit tests, 
Pearson's Chi-square test and the likelihood ratio test, need to be 
modified. This . can be done easily under the assumption that
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censoring occurs only at the end of an interval. Censoring of 
downtime durations is very light and this assumption is therefore 
unproblematic. I base a goodness-of-fit test on the hazard rather 
than on the probability of a failure occurring in a specific 
interval. The null hypothesis and its alternative are:

H0:
(31)

Hi: h01*hir i=l,2, . . . ,k

where hA is the empirical hazard of interval i and hoi is the hazard 
in interval i implied by the estimated model. Thus the null 
hypothesis tests whether the hazard implied by the estimated model 
is consistent with the empirical hazard in every period. The log- 
likelihood function is

Piloghi* (R±-Di) log (l-hj ]
i

where and ^  are the number of failures and the size of the risk 
set in interval i. The likelihood ratio test statistic becomes:

A=-2 [I (H0) -maxi] = 2 ^  {Ri-Dj) log^-~ ^ -j (33)

which under the assumption about independence of censoring and 
durations— satisfied because downtime durations are only time 
censored— has the standard limiting X2(k_q) distribution, where q is 
the number of parameters estimated under H , and k-q are the
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degrees of freedom33.

In regression type duration models, regressors are normalized 
to have mean 0 and variance 1. The normalization substantially 
improves numerical convergence, avoids over- and underflow 
problems, and makes the size of parameter estimates for different 
regressors comparable. The means and standard deviation of the 
regressors before normalization are reported with the regression 
results.

3.1.1 unscheduled outages - equipment failures
The results for five model specifications are reported in 

tables 13a-f. Variables that were not found to be statistically 
significant in a preliminary analysis are excluded. The excluded 
variables are the number of the spell in a fuel cycle (measuring 
occurrence dependence under the assumption of regeneration during 
refueling), the previous refuel duration, and generating capacity 
(Germany only). The last row contains the p-value for a chi-squared 
goodness-of-fit test which compares the predicted probabilities of 
durations falling into one of 20 intervals of equal length with the 
observed probabilities. Equal spacing makes the test very tough 
because a few unusually long durations will put a lot of weight on

33 On a more technical note, the limiting distribution is of 
degree k-q only if the maximum likelihood estimates use discretized 
(grouped) data, not when they are based on the raw continuous 
(ungrouped) data (eg. Kendall and Stuart, 1967, Ch.30). Thus the 
test is slightly conservative with ungrouped data.
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the tails (compared to using intervals with the same number of 
observed durations).

The goodness-of-fit test reveals that simple hazard 
specification such as the exponential or the Weibull model are 
inconsistent with the data for Belgium, France, and Sweden at the 
1% significance level. It appears that the exponentiated quadratic 
polynomial hazard is the most appropriate functional form for 
equipment failure outages. It is the only model that passes the 
goodness-of-fit test at the 1% level for 4 out of 5 countries, and 
the test does not reveal any inconsistency of the model with the 
data even at the 30% level for Germany and Switzerland. The 
exponentiated quadratic polynomial is also the best specification 
reported for Belgium, the only country where all of the reported 
specifications are rejected at the 1% level34.

Although the regressor variables play an important role, 
unobserved heterogeneity is likely to be substantial: outage
durations caused by equipment failures depend on the particular 
type of failure35. Cattaneo et al. (1988) have analyzed unplanned 
outages with respect to problem categories and their findings 
substantiate this impression. They calculate a mean outage time for 
reactor vessel equipment problems of 3467 hours and a mean outage 
time for turbine problems of only 65 hours. In the lower tail of

34 Note that passing the test at 1% means that the model is 
rejected at the 5% or 10% level.

35 Unfortunately, after comparing the information in the IAEA 
publications with detailed descriptions of events in trade journal, 
it appears that the data is not reliable enough on this aspect to 
be used in any quantitative analysis.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

the duration distribution, a physical reason, xenon poisoning (e.g. 
Pershagen, 1989), may contribute to the failure of modeling outage 
durations by standard distribution function. Xenon-135 is a strong 
neutron absorber and it is no longer lost through neutron 
absorption once the reactor is shut down. But because iodine-135 
continues to decay to xenon, the xenon concentration increases once 
the neutron flux disappears. Unless the reactor can be restarted 
very quickly (within the first 2-5 hours), it may become necessary 
to wait until the xenon concentration, which reaches a peak about 
10-12 hours after shutdown, has decreased sufficiently.

Both discrete mixing (the technique underlying estimates in 
David and Mroz, 1989) and gamma mixing models (only gamma mixing 
for the Weibull model is reported in tables 13a-f) were successful 
in dealing with the problem of unobserved heterogeneity, success 
being defined as passing goodness-of-fit tests.

Parameter estimates are sensitive to the specification, 
although sign changes are rare. One bad case of nonrobustness 
occurs for France: the duration dependence becomes positive and 
three estimated parameters change signs when unobserved 
heterogeneity is permitted in the Weibull model. "Significant" 
results may easily become insignificant in more flexible models, 
and they may be even less robust than that! This illustrates the 
importance of a sensitivity analysis before reaching conclusions. 
No uniform picture about the effect of regressors across countries 
emerges from the analysis, even though many parameter estimates are 
significantly different from zero. Thus variables may not capture
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fixed technological relationships, but characteristics of plant 
operations subject to the operator's control.

3.1.2 scheduled outages - refueling
Refuel outage durations are without any doubt the main 

determinant of availability. Tables 14a-f contain the result for 
several model specifications. The exponential hazard was again 
found to be very inadequate compared to more general hazards, it 
was never consistent with the data at the 1% significance level. 
Although the overall fit (all countries and models) was not better 
than for unplanned outages due to equipment failure, some models 
(with Weibull hazards) described the data very well for several 
countries. For example, the Weibull model (even without unobserved 
heterogeneity) was not rejected at the 12.5% significance level for 
Sweden under the goodness-of-fit test described in the previous 
subsection. Note the strong positive duration dependence. With a 
shape parameter that high, the Weibull distribution becomes almost 
indistinguishable from a normal distribution (compare figure 16). 
That is, refuel durations (not log(durations)) could be considered 
to be normally distributed, conditional on the regressors. Figure 
17 plots the actual cell probabilities for Sweden and France. Note 
the far right cells, which according to one's taste may be labeled 
"due to unobserved heterogeneity" or "outliers". Except for these 
cells, the Weibull model without unobserved heterogeneity captures 
the general distribution fairly well. Figure 18 plots the predicted 
cell probabilities under the exponential model without
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heterogeneity and the Weibull model with gamma mixing for Sweden. 
The goodness-of-fit test compares the probabilities of figures 17 
and 18.
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Table 13: Outages due to equipment failure

dependent variable is duration in days
continuous regressors are normalized to mean 0 and standard 
deviation 1
regressors: constant

# of spell in cycle 
last up duration
up time since last refuel outage 
last refuel duration
age of plant (time since first commercial operation) 
capacity (MW)
BWR dummy (no BWR's in France and Belgium)

Table 13a: Means and Standard Deviations of Regressors

country last up 
(hours)

up since 
last 
refuel 
(hours)

age
(hours)

capacity
(MW)

BWR
(dummy)

Belgium 1540
(1628)

3211
(2436)

65924
(29646)

634 (254) no BWR

France 1179
(1335)

3011
(2433)

32093
(16435)

907 (42) no BWR

Germany 1537
(1857)

3597
(3249)

64338
(27810)

not used 0.47
(0.50)

Switzer­
land

2076
(2013)

2966
(2414)

75372
(54479)

584 (297) 0.27
(0.46)

Sweden 1293
(1404)

2941
(2425)

69030
(29787)

671 (177) 0.80
(0.40)
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Table 13b: France 400 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-2.5535 -2.4985 -2.3966 -2.1874 -2.3056

last up 0.1835 
(0.0655)

0.1109
(0.0638)

-0.0691
(0.2268)

0.0799
(0.0650)

up since 
ref

0.1877
(0.0623)

0.1061
(0.0617)

-0.1966
(0.2421)

0.0464
(0.0623)

age 0.0528
(0.049)

0.0292
(0.04928)

0.3774
(0.2030)

0 .0203 
(0.0500)

BWR 0.0804
(0.0486)

0.0502
(0.0486)

-0.0817
(0.1709)

0.0435
(0.0459)

constant* -1.5535
(0.0500)

-1.4985
(0.0500)

-0.9498
(0.0718)

2.3817
(1.0772)

-0.9248
(0.0643)

shape1 0.7482
(0.0263)

5.5267
(1.211)

-0.1041 
(0.0115)

var/
shape2*

8.0993
(2.0704)

0.0712
(0.0102)

p-value <0.0001 <0.0001 <0.0001 0.01884 0.0296
*: The constant is ln(A.), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 13c: Sweden 169 observations
expo expo Weibull Weibull

with
Gamma
mixing

expoquad

mean
logl

-2.1914 -1.9705 -1.9665 -1.8990 -1.9270

last up 0.2776
(0.1006)

0.2539 
(0.1020)

0.2899
(0.2267)

0.2131 
(0.1009)

up since 
ref

0.2392
(0.1003)

0.2175 
(0.1010)

0.1657
(0.2265)

0.1754
(0.0990)

age -0.4297
(0.1204)

-0.3960
(0.1236)

-0.2799
(0.3033)

-0.3129 
(0.1247)

capacity -0.3342
(0.1454)

-0.3106
(0.1459)

-0.2885
(0.3399)

-0.2462
(0.1452)

BWR 0.3970
(0.0988)

0.3667
(0.1018)

0.4356
(0.2430)

0.2900
(0.1018)

constant* -1.1914
(0.0769)

-0.9704
(0.0769)

-0.8772 
(0.1092)

0.1413
(0.5010)

-0.6451
(0.1099)

shapel 0.9368
(0.0536)

2.4480
(0.5848)

-0.1229
(0.0374)

var/
shape2*

2.4835
(0.9547)

0.2892
(0.1222)

p-value <0.0001 0.0001 0.0002 0.0026 0.0103
*: The constant is ln(A), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 13d: Germany 51 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-2.1279 -1.9515 -1.936 -1.9121 -1.8576

last up -0.2865
(0.1802)

-0.2050 
(0.1834)

0.0308
(0.2574)

-0.0943 
(0.1834)

up since 
ref

0.5070
(0.1814)

0.3948
(0.1883)

0.2711
(0.2748)

0.3026
(0.1867)

age 0.3263
(0.1615)

0.2302 
(0.1625)

0.27765
(0.2423)

0.2302 
(0.1621)

BWR 0.3182
(0.1758)

0.2389
(0.1710)

0.4694
(0.3027)

0.2771 
(0.1700)

constant* -1.1705 
(0.1414)

-0.9959
(0.1416)

-0.6966 
(0.1867)

-0.4507
(0.2996)

-0.4463
(0.2090)

shape1 0.8144
(0.0875)

1.1269
(0.2628)

-0.2598
(0.0951)

var/
shape2*

0.6041
(0.4867)

0.9917
(0.4371)

p-value <0.0001 0.0001 0.0165 0.0083 0.5079
*: The constant is ln(l), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 13e Switzerland 15 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-2.2432 -1.8031 -1.6484 not -1.5894

last up 0.1723 
(0.5799)

0.2772
(0.7079)

converged 0.8818
(0.7509)

up since 
ref

0.3064
(0.6663)

0.4276
(0.8499)

0.0895
(0.7549)

age -1.9362
(1.3580)

-3.0783
(1.7733)

-6.3572
(3.2119)

capacity -1.3131
(1.2432)

-1.9073
(1.5341)

-4.6464
(2.5789)

BWR 0.1058
(0.5297)

0.1767
(0.6319)

-0.0692
(0.5680)

constant* -1.2432
(0.2582)

-0.8031
(0.2582)

-1.5570
(0.5077)

-1.7951
(0.7356)

shape1 1.6978
(0.3861)

0.2325
(0.2781)

var/
shape2*

1.2703
(1.7585)

p-value 0.0024 0.0087 0.0213 0.3571
*: The constant is ln(X), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)—(30)
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Table 13f: Belgium 54 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-2.1266 -2.0328 -2.0322 -1.9373 -2.0143

last up -1.0328
(0.1361)

-0.1910
(0.1581)

-0.0916
(0.4707)

-0.1641 
(0.1689)

up since 
ref

-0.0086 
(0.1716)

-0.0121
(0.1723)

0.2847
(0.4992)

0.0205 
(0.1713)

age -0.0461
(0.2288)

-0.0505
(0.2302)

-0.1707
(0.6099)

-0.0153
(0.2281)

capacity -0.3652
(00.2273)

-0.3828
(0.2377)

0.1477 
(0.6092)

-0.2522
(0.2362)

constant* -1.1266
(0.1361)

-1.0328
(0.1361)

-1.0747
(0.2108)

-0.2477
(0.6024)

-0.7910
(0.2104)

shapel 1.0281
(0.1076)

2.8852
(0.8916)

-0.1094 
(0.0832)

var/
shape2*

2.7350
(1.3397)

0.3688
(0.3701)

p-value <0.0001 <0.0001 <0.0001 0.0047

*: The constant is ln(A), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)—(30)
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Table 14: Refuel outages
dependent variable is duration in months
continuous regressors are normalized to mean 0 and standard 
deviation 1
regressors: constant

# of spell in cycle 
last up duration
up time since last refuel outage 
last refuel duration
age of plant (time since first commercial operation) 
capacity (MW)
BWR dummy (no BWR's in France and Belgium)

Table 14a: Means and Standard Deviations of Regressors
country up since 

last 
refuel 
(hours)

last
refuel
duration
(hours)

age
(hours)

capacity
(MW)

BWR
(dummy)

Belgium 7869
(1742)

874
(223)

70008
(26070)

622 (252) no BWR

France 7563
(988)

1658
(946)

35111
(14803)

903 (14) no BWR

Germany 7869
(2100)

1412
(1505)

70168
(30081)

931 (300) 0.21
(0.41)

Switzer­
land

7390
(1675)

882
(198)

88369
(42282)

522 (280) 0.27
(0.46)

Sweden 7775 
(1805)

1167
(562)

65774
(29534)

713 (169) 0.78
(0.41)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 14b: France 85 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-1.4211 -1.4515 -0.7938 -0.6580 -0.7395

up since 
last ref

0.0062
(0.1057)

-0.1498
(0.0979)

0.4079
(0.2746)

-0.0129
(0.1009)

last ref 
duration

-0.0902
(0.1305)

-0.3755
(0.1628)

-0.3925
(0.2566)

-0.3671
(0.1617)

age -0.5361
(0.1302)

-0.1415
(0.1523)

-0.4572
(0.2879)

-0.1412
(0.1481)

capacity 0.0128
(0.1131)

0.1000
(0.1242)

-0.0074
(0.2190)

0.0468
(0.1210)

constant* -0.4547 
(0.1085)

-0.4115 
(0.1085)

-1.7005
(0.2037)

-2.2938
(0.3137)

-4.6314
(0.6472)

shape1 3.0134
(0.2359)

6.5622
(1.4859)

4.9598
(0.7649)

var/
shape2*

1.4658
(0.6976)

-104.26
(21.82)

p-value <0.0001 <0.0001 <0.0001 0.0046 <0.0001

*: The constant is ln(X), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 14c: Sweden 41 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-1.3660 -1.3360 -0.7719 -0.3243 -0.7512

up since 
last ref

0.0447
(0.1712)

0.2024
(0.1562)

-2.1369 
(1.5170)

0.1550 
(0.1533)

last ref 
duration

-0.0635
(0.1899)

-0.1981
(0.2443)

-1.9304
(1.2726)

-0.2661
(0.2393)

age 0.0248
(0.2812)

0.0737
(0.3105)

-2.4205
(1.4230)

0.2280
(0.3055)

capacity 0.1154
(0.3212)

0.1326 
(0.3689)

2.6526
(1.5598)

0.3014
(0.3615)

BWR 0.2285
(0.2008)

0.3908
(0.2121)

7.5134
(3.1646)

0.5210
(0.2196)

constant* -0.3660 
(0.1562)

-0.3360
(0.1562)

-1.2098
(0.2464)

-1.5608
(0.7345)

-3.7518
(0.7769)

shape1 2.6592
(0.2917)

21.52
(8.10)

4.5879
(1.0114)

var/
shape2*

6.5190
(3.091)

104.53
(30.02)

p-value <0.0001 <0.0001 0.1252 0.1350 0.0002
*: The constant is ln(A), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 14d: Germany 38 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-1.5933 -1.5649 -1.2205 -0.9790 -1.2939

up since 
last ref

-0.2534
(0.2282)

-0.6181
(0.2442)

-1.1054 
(0.5510)

-0.5808
(0.2459)

last ref 
duration

0.1431 
(0.1807)

0.4623
(0.1920)

-0.1152
(0.3852)

0.3454 
(0.1887)

age -0.2278
(0.2914)

-0.6467
(0.3393)

-1.2256
(0.8210)

-0.6719
(0.3445)

capacity -0.0742
(0.2567)

-0.2078
(0.2709)

-1.0101
(0.9024)

-0.2661
(0.2715)

BWR -0.0278
(0.2538)

-0.2588
(0.2938)

0.4761
(0.5284)

-0.0667
(0.2815)

constant* -0.5933
(0.1622)

-0.5649
(0.1622)

-1.4776
(0.2916)

-1.9993
(0.4929)

-2.1993
(0.4922)

shape1 2.1235 
(0.2636)

7.5601
(2.1643)

1.6960
(0.4675)

var/
shape2*

2.9451
(1.2297)

-24.39
(9.055)

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
*: The constant is ln(l), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 14e: Switzerland 22 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-1.2816 -1.2744 -0.3362 not -0.2533

up since 
last ref

0 .0226 
(0.2709)

0.6203
(0.7871)

converged 0.3320
(0.6738)

last ref 
duration

-0.02274
(0.2467)

-0.0195
(0.2881)

-0.0620
(0.2749)

age -0.3270
(0.6683)

-1.7004
(0.7501)

-1.5248
(0.7602)

capacity -0.3205
(0.6726)

-1.6181
(0.7107)

-1.5299
(0.7329)

BWR -0.1102 
(0.2636)

-0.6611
(0.3035)

-0.3954
(0.2916)

constant* -0.2816 
((0.2132)

-0.2744
(0.2132)

-1.6015
(0.4220)

-7.2197
(1.9681)

shape1 4.2906
(0.7604)

9.6851
(2.6877)

var/
shape2*

-252.99
(89.42)

p-value <0.0001 <0.0001 <0.0001 <0.0001

*: The constant is ln(A), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Table 14f: Belgium 17 observations

expo expo Weibull Weibull
with
Gamma
mixing

expoquad

mean
logl

-1.4111 -1.3620 -0.5257 -0.5241 -0.6472

up since 
last ref

-0.1877 
(0.2922)

-0.5766
(0.3089)

-0.6750
(0.5170)

-0.5357
(0.3078)

last ref 
duration

0.1387
(0.2660)

0.7402
(0.3689)

0.7773
(0.4046)

0.6889
(0.3755)

age -0.2299
(0.3181)

-1.2883
(0.4648)

-1.3312
(0.5239)

-1.1971
(0.4924)

capacity -0.1144 
(0.3553)

-0.6783
(0.4316)

-0.7528
(0.5415)

-0.5847
(0.4612)

constant* -0.4211
(02425)

-0.3620
(0.2425)

-1.8419
(0.4999)

-1.8981
(0.5730)

-3 .7653 
(1.0296)

shapel 3.9801
(0.7737)

4.3631
(1.7398)

3.6772
(1.0301)

var/
shape2*

0.1542 
(0.5992)

-48.19
(23.35)

p-value 0.0095 0.0007 0.0739 0.0436 <.0001
*: The constant is ln(l), var is variance of gamma distribution, 
shape 2 is 100y2; see equations (26)-(30)
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Figure 16: Probability Plot Weibull vs. Normal
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Figure 18: Model Predictions for Refuel Outage Durations: Sweden
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3.2 Uptimes

Real systems can be repaired and restored to satisfactory 
performance without necessarily having the properties of a 
completely new system. Despite this obvious fact, almost all 
statistical models only consider the occurrence of the first 
failure, or put differently, they only consider nonreoairable 
systems. Nonrepairable systems are replaced upon failure which 
leads to the renewal assumption at every event, an assumption that 
was rejected in chapter 236. Both the models by Rust (1987) and Ryu 
(1990) belong to this class, as do standard failure time models 
(see section 3.2.2). The situation is not better in the engineering 
and statistics literature where renewal models have been used even 
if the application clearly was inconsistent with the assumption of 
a nonrepairable system37. But how can the relationship between 
successive failures of a repairable system be modeled? This section 
derives such a model and estimates a parametric version of it.

3.2.1 Repairable and nonrepairable systems
A complex system consists of different units/components, some 

of which may be redundant. I consider a system in which components

35 An excellent introduction to reliability analysis of
complex nonrepairable system is Barlow and Proschan (1975).

37 Asher and Feingolds (1984) provide a book long criticism 
of the literature. See Frees (1988) for an example of an incorrect 
application of the renewal assumption.
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are connected in series and in which the failure of any component 
causes a system failure. Assume that each component is immediately 
replaced upon failure and that failures of components are 
independent. A mode is the location of a component. The flow of 
system failures is the superposition of the renewal processes of 
the failure modes m=l,...,M.

Consider a completely new system and let T* denote the time of 
the first system failure and Tm the "latent" failure time in mode 
m. The probability of no system failure in the interval [0,t] is

p (t> t) =p(r1>t)p(r2>t).. .p(Ta>t) (34)

Each failure mode m has an associated hazard function A.m(t) and 
survivor function

t
Sm(t)=P(Tm>t)=exp[-fXm(u)du] (35)

o

Thus the system survivor function (for the first failure) in terms 
of mode hazard functions becomes

t
S (t) =exp [-fX(u) du]

o
t t t

=exp [-JXĵ iu) du] exp [-jX2{u) du] .. .exp [-jXM(u) du] (36)
0 0 0
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and the system hazard

f(t) _ dlogS(t) (37)

is simply the sum of individual failure mode terms. This standard 
failure time formulation for independent competing risks underlies 
the semi-Markov model of chapter 2 and the analysis in David, 
Rothwell, and Maude-Griffin (1991).

Now consider the failure intensity after the first failure, 
say in mode j, has occurred at T* and the component in mode j has 
been replaced by a new component:

At the next failure T**, another component is replaced and the 
hazard function in this mode is reset to time 0, but not the hazard 
function in the other modes. Clearly, the failure rate of the 
system (failure intensity or system hazard) is a complicated 
stochastic function with discontinuous jumps at each failure time. 
The sequence of failures is a nonstationary point process but it is 
not a nonstationary Poisson process because the system failure rate 
depends on which component was renewed. Probabilistically, we have 
the following relationship. Let Nn(t) be thie random number of 
failures in mode m until time t. The number of system failures N(t)

M (38)
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and its expected value (the renewal function) H(t) is obviously

2D (39)
M M

EN( t) =H( t) = £  ENm (t) = £  Hm (t)
m m

The expected intensity of failures is the derivative of the renewal 
function

h(t)=-g-H(t) (40)at

Note that this is a deterministic function of time and thus 
different from the actual failure intensity A(t) which depends on 
the pattern of failures. However, if the contribution of each 
component hazard to the overall failure rate is small, the failure 
and renewal of an individual component has only a small effect on 
the system failure intensity. Thus for a complex systems with a 
"large" number of modes, the system failure intensity approaches 
that of a deterministic function and failures follow a 
nonstationary Poisson process. Figure 19 demonstrates this for two 
cases with identical modes and components. The number of modes are 
m=2,20, and 200; component lifetimes have a Weibull distribution 
with parameters 1.0/m (scale) and 1.5 (shape) in a) and 2.0/m 
(scale) and 0.75 (shape) in b) . Note how fast the convergence 
occurs and how close a deterministic function of time could 
approximate the stochastic intensity of a relatively small system
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with 200 modes. Real system consists of a much larger number of 
components, probably in the thousands, that could cause a failure 
and the approximation does not appear to be too unreasonable. The 
asymptotic result can be made precise, see Cinlar (1972) and Cox 
and Isham (1980).

Consider an important special case of failures, namely 
failures due to installation errors or substandard components. The 
renewal argument of the preceding section does not apply because an 
installation error is generally removed, not renewed. Similarly, a 
substandard component is general replaced by a standard 
component38. A number of models dealing with increasing reliability 
over time due to the detection of errors and learning have been 
developed in the engineering literature as software reliability 
models. These models are among the few exceptions in the literature 
that considered multiple failures of the same system. Errors in 
computer programs are not due to an ageing and wear-out process, 
and thus only one failure type is analyzed. An early software 
reliability model was developed by Jelinski and Moranda (1972) who 
suggested the following model.

38 Although an "imperfect" repair might make it possible that 
a substandard component is renewed with probability p and replaced 
by a new regular component with probability (1-p). The imperfect 
repair model (Brown and Proschan, 1983) was introduced somewhat 
differently in the literature. Brown and Proschan considered a 
component which is renewed with probability p (perfect repair) and 
returned to operations without changing its degradation (the hazard 
is not reset) with probability 1-p (imperfect repair).
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Assumptions:
1. The successive interfailure times of the program t± are 
independently exponentially distributed with a hazard proportional 
to the number of errors remaining

A. ( t) =<J> (iST-i+1) (41)

where <j> is an unknown constant and N is the number of errors 
initially present in the program.
2. Each failure cause is perfectly and immediately removed after 
causing a failure.

These assumptions imply a likelihood function for n observed 
interfailure times t, ,t_,..,tl 2 n

n
L(N,tJ>) =JJ <|> (N-i + 1) exp [-<|> (N-i+1) t] (42)

A number of variants and extensions of this model exist 
(Shooman, 1972, Musa, 1975, Littlewood, 1981). Littlewood and 
Verrall (1973) describe a Bayesian reliability growth model for 
computer software in which repair actions diminish the failure rate 
probabilistically.

Although these models can be very useful when reliable 
information on outages at the component level is available, the 
problem with the IAEA data is that the precise cause is often
unknown and it is never known if the failure cause has been found
and removed. Does there exist a similar approximation for such
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model as for a complex system with many renewable components?

Consider the following generalization of a software 
reliability model: "bugs" (installation errors, software errors, 
substandard components) need not have the same hazard of causing a 
failure, but this (constant) hazard may depend on the location 
(mode) of the "bug". Each "bug" has a constant hazard d of being 
detected. Thus the system hazard is a doubly stochastic process 
with intensity:

* ( « = £ )  I{Ta>t)X m (43)1

where Tm is the time at which a "bug" in mode m is detected and 
removed. The expected value of the system hazard l(t) is:

EX {t) = £  X mexp r-dfc] (44)
m=l m=i

What happens as the number of "bugs" grows large while for 
each "bug" the hazard of causing a failure becomes small?

Proposition:
Consider the sequence

r  e  * - 1 . 2 ......... < 4 5 >
jn=l i=l A

where A,ml are iid random variables with finite mean X and variance. 
As the number of bugs, all of which have the same detection hazard
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d«» grows large (K->»), the system hazard converges pointwise (for 
any fixed t) to Mlexp(-dt).
Proof:
The system hazard is

This is an interesting result because it implies that for certain 
types of "learning" a Gompertz system hazard is the correct 
parametric form rather than the much more common Weibull hazard.

3.2.2 A point process formulation
The preceding discussion indicated that point processes (Cox 

and Isham, 1980) provide a powerful framework to model the 
occurrence of successive events in time. With a large number of 
failure modes where each individual failure hazard is small, the 
system failure intensity may be approximated by a nonstationary

(46)

with expected value

(47)
m a »

-p.exp l-dt] =A/lexp [-dt]
m=1 7=1 K

M K

711=1 1 = 1

Because of the law of large numbers

SL JL X (48)
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Poisson process, even if the system is not a superposition of 
individual renewal processes. Consider the following statistical 
mechanism:

A system i is installed at time 0 and failures (which are 
repaired immediately) occur randomly according to an intensity 
^(t/X^t) ,0) where xi(t) is a vector of covariates and 0 is a vector 
of unknown parameters. At time T± the system is shut down (T± is a 
censoring time). To simplify notation, I drop the dependence on x 
and 0. The Poisson assumption implies that the increments of the 
associated counting process N±t are independent. However, the 
intervals between points are not independent since the integrated 
hazard and the survivor function of t conditional on starting at t̂  
both depend on the starting point.

t
A (tir t) = fX (u) dui (49)

S(tj, t) =exp{-A (tj, t)}

For a sample of n such systems with fixed censoring times T± 
and mA observed events at times 0=t10<t±1<ti2<. . .<timi<T1 for process 
i, the log-likelihood function is:

n ai n

1 < ■ > = £  £  {lo^  < ty)}-E A( ti*^)1-1 >1 l-i (50)
j a y '^Eiog^^-EAfo^)

i=l j=l i=1

If T± is a noninformative independent variable rather than a 
constant, the complete log-likelihood only involves an additional
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term that does not contain any unknown parameters of interest. This 
model is different from many existing models which assume 
regeneration at each event (the failure time formulation resets 
time to 0 after each event) . It is useful to compare the
statistical properties of a sequence of interfailure times under 
the assumption of a repairable system and under the
renewal/regeneration assumption. Letting tm denote the time of the 
m'th failure, the renewal assumption implicit in failure time
models implies that the survivor function for the m'th failure is

S^enewal (t\tm.x) =S{ 0, t-fVi) =exp{-A(0, t-fc^)} (51)

The incorrect renewal assumption would lead to the likelihood 
function

j renewal ( . ) = £ £  {log* ( t* ,-  t ^ )  -A  (0 , t±j- A ( 0 , TT- t ^ )  ( >
i=l j=l i=1

which yields inconsistent estimates unless the intensity function 
is constant (the exponential model). The multiple spell models in 
economics, discussed in Heckman and Singer (1985), are built on the 
renewal model, although dependence between successive events is 
introduced through covariates in actual applications. Whereas the 
renewal/failure time model resets time to 0 at the beginning of 
each spell (spell time), the point process formulation measures 
time from one constant point for the life of the system (cycle or 
plant time). A graphical comparison of the two ideas with respect
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to their treatment of time is given in figure 20.

Figure 20: Failure Time vs. Process Formulation
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The following example illustrates the argument. Proschan 
(1963) presented his famous data set on interfailure times of the 
air-conditioning systems of 13 Boeing 720 jet airplanes with the 
goal to obtain information about the distribution of failure 
intervals. This data set has been analyzed by many researchers, 
including Barlow et al. (1972), who perform a statistical test 
using the interval between failures to form a "cumulative total 
time on test" statistic. Their null hypothesis is that failures are 
exponentially distributed, the alternative hypothesis is that the 
hazard of failures increases. Time is measured from the last repair 
(spell time). But the equipment aging trend they discuss cannot 
measure aging of the air-conditioning system because their test 
ignores the order of occurrence of interfailure intervals. This 
implies that the authors implicitly assume that each repair
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completely renews the air-conditioning system and that a repaired 
system is indistinguishable from a new air-conditioning system, 
regardless of its age!

Cox and Lewis (1978) have also analyzed the air-conditioner 
data set. Their null hypothesis is that failures occur according to 
a homogeneous Poisson process, the alternative is that failures 
occur according to a nonstationary Poisson process with intensity 
X=exp(a+bt), where t measures the age of the system. In other 
words, Barlow et al. assume that their is no aging of the system, 
only the effect of repair wears out, whereas Cox and Lewis 
correctly consider the system wear-out. On the other hand, the 
failure intensity in the model of Cox and Lewis is independent from 
the time since the last repair, i.e. there is no wear-out effect of 
repairs. The confusion between renewal models and models that do 
not reset the process at each event appears to continue in the 
literature (see Asher and Feingold, 1984). The statistical point of 
view taken here is similar to Cox and Lewis and differs from Barlow 
et al. or David et al. (1988), who suggest a renewal theory
framework to analyze nuclear power plant operations. Summarizing, 
we can say that renewal theory cannot model system behavior because 
the order of occurrence of events is ignored.

The most common way to introduce regressors in failure time 
models is the so-called proportional intensity model where a 
function of the covariates acts multiplicatively on the baseline
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hazard. A particularly convenient form is

A, {t,xi,Q) =A0 (£,0X) exp (x'iQ2) (53)

and this model extends immediately to point processes (Lawless, 
1987). Since observed data is necessarily incomplete, much research 
in economic duration analysis has been devoted to address the 
problem of "unobserved" heterogeneity (Lancaster, 1979, Flinn and 
Heckman, 1982, Heckman and Singer, 1984), mainly restricted to the 
case of scalar heterogeneity in a proportional hazard model. The 
analogue for a point process is an intensity

X(t,xi,Q,v) =k0(t,91)exp(x/jdz) exp(v) (54)

where n is unobserved with a probability density function k(v). The 
likelihood function requires integration with respect to v

Itti
JJ
17=1

exp [-A(0, ri,xi,0, v |v] dk(v) (55)

The gamma distribution is the most commonly used distribution for 
mixing distributions because it is analytically manageable. As long 
as there is a constant term in the covariate function, we can 
assume n to have mean 1 and variance a. This model was originally 
estimated by Lancaster (1979) for single durations. Under the 
proportional hazard assumption with a gamma mixing distribution we 
can perform the integration analytically to obtain the likelihood
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function:

L(

r (/ni+g~1 [a exp (x'dQ2) A 0 (0, Td, 6J ]J
(56)

r<«-1) [i+aexp(^02)Ao(O, T’i,01)]J”1

Finding a good model for the baseline intensity may be of 
substantial practical importance and a factor limiting the 
applicability of standard parametric intensities is the empirically 
well documented "bathtub" shape of the failure rate of both 
repairable and nonrepairable systems. Some authors even claim that 
a complex system "... will invariably have the general 
characteristics of a bathtub curve. The bathtub curve is a 
ubiquitous characteristic both of inanimate, complex engineering 
devices and of living creatures." (Lewis, 1987, p.84)

The Weibull hazard, the most common nonstationary model, is 
either monotonically increasing or monotonically decreasing, the 
log-logistic hazard is either monotonic or has an "inverse bathtub" 
shape, as are other tractable parametric forms39. I therefore 
estimate flexible intensity models, one class being exponentiated 
polynomial and spline function, for example

X (t) =exp
k=0

(57)

39 Glaser (1980) discusses the conditions under which a 
parametric form can model the bathtub shape.
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The problem with polynomials without exponentiation, which would 
lead to simpler estimation, is how to incorporate the non­
negativity constraint. Another class of models, several of which 
are estimated in the next chapter, are additive intensities. As 
discussed earlier, there are different failure types. If we can 
approximate each type by a particular form, for example a Gompertz 
model for installation errors and substandard components and a 
Weibull model for wear-out, the system failure rate is the sum of 
both intensities:

>. (t) =exp (01+02t)+0304t0*-1 (58)

3.2.3 Results
The performance of the failure time and the point process 

model is compared in an analysis of up time durations in European 
nuclear power plants (table 15a-f). In the point process model, the 
dependent variable is time in months since startup from the last 
refuel outage (i.e. the fuel cycle is the life of the system), in 
the failure time model, it is time in months since startup from the 
last outage. There are two reasons for considering fuel cycles as 
the unit of analysis in the process model. The first reason is 
based on a casual analysis of plant operations: we can observe that 
utilities attempt to return the plant to the running state as 
quickly as possible if an unscheduled event occurs and such outages 
often last only a few hours. Repair performed during these outages
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cannot affect more than a minor part of the complex system40.
During refuel outages, however, we observe extensive 

maintenance and inspection activities in which sometimes more than 
one thousand people, often from outside the plants, are involved. 
Compared to the minimal repair of equipment failures, the extensive 
maintenance activities affect a substantial part of the plant. I 
therefore consider two stylized actions: one is to repair the plant 
upon failure which returns the plant to its operating state but 
does not change the current state of degradation, the other is to 
shut the plant down for refueling and maintenance and this resets 
the degradation process (renews the plant).

This assumption is not necessarily contradicted by the 
existence of plant aging (e.g. the conference papers published in 
International Atomic Energy Agency, 1983, 1988). The focus of the 
research on plant aging is on plant systems that cannot be replaced 
or were not constructed to be replaced (such as the pressure vessel 
and the containment) and on degradation problems over the whole 
life of a plant, i.e. 50 years or more. These degradation 
mechanisms therefore change the statistical properties of the plant 
very slowly and can be considered constant over the relative short 
duration of a fuel cycle and even over the observation interval of 
the data. This is consistent with a statistical analysis of the 
data, the second reason for choosing a "fuel cycle" model: the

40 In fact, more detailed descriptions of outages in trade 
journals show that typically only the failure cause is removed and 
that no major preventive maintenance of other parts of the plant is 
performed.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

nonparametric test of the renewal assumption following refuel 
outages was not rejected in chapter 2, whereas the renewal 
assumption at every event was. Nevertheless, I account for 
differences between older and newer plants in this section by 
including plant age as a regressor.

The regressor variables are the last refuel duration, age of 
the plant (at the occurrence of the event), capacity, and a dummy 
variable equal to one for BWR. The failure time model uses the time 
since the last refuel outage in addition41. The operator's decision 
to shut the plant down for refueling and maintenance is treated as 
independent censoring in both models. The distribution of censoring 
times (operating cycle lengths) are plotted in figure 21, table 16 
gives descriptive statistics42. Chapter 4 develops a behavioral 
model for the distribution of operating cycle lengths.

Consider first the failure time model. The coefficient of time 
since last refueling is significantly (1%) negative for all 
countries and both the Weibull and the exponentiated quadratic 
polynomial baseline hazard. This implies that failures are higher 
at the beginning of the fuel cycle while the operators detect and

41 This regressor is necessary in the failure time model to 
address the nonstationary detected in section 2.2 (rejection of 
renewal at every event). It could also be included in the process 
formulation unless the baseline hazard is exponential (in which 
both models coincide). Although the variable is ideally treated as 
continuously varying, its value was taken at the occurrence of the 
event (see the criticism of this treatment of time varying 
covariates in Heckman and Singer, 1985).

42 The statistics in brackets include two very unusual fuel 
cycles. These two cycles were excluded in the analysis in chapter 
4.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

resolve problems caused by incorrectly installed equipment, 
imperfect maintenance, or substandard components installed during 
the refuel outages. The same phenomenon in the process model is 
measured by the shape parameter(s) of the baseline hazard. The 
other (statistically) significant regressors in the failure time 
formulation are the BWR dummy in Germany, and capacity in Sweden. 
The positive estimate of the BWR coefficient in Germany (implying 
more outages) reflects the problems with the design of BWR in 
Germany (and the U.S.). In particular, many of these outages were 
caused by problems in the piping system due to stress corrosion 
cracking. The negative coefficient on capacity in Sweden implies 
fewer problems with larger units. Since the larger units 
incorporate design changes following operating experience with 
smaller units, the coefficient reflects successful design 
changes43. The estimated baseline hazards in the failure time model 
do not exhibit substantial duration dependencies, which does not 
change when controlling for the possibility of unobserved 
heterogeneity in the Weibull baseline hazard model. Almost all of 
the duration dependence is captured by the (time-varying) covariate 
"time since the last refueling outage".

Although the failure time formulation is the standard way of 
modeling multiple spells, it compares poorly to the process

43 A priori, I expected this effect to show up in the plant age 
coefficient. However, reconsidering the actual data, design changes 
are much clearer reflected in capacity for Sweden or France (but 
not, for example, for Canada) than in plant age.
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formulation when comparing the values of the likelihood function44. 
The exponentiated quadratic polynomial baseline intensity in the 
process formulation is a very dramatic improvement over all other 
specifications45. Not surprisingly, this formulation is the only 
one in accordance with an error ("bugs") detection model when 
"bugs" in a plant can be detected and removed without necessarily 
causing a failure (see above). Contrary to the usual experience 
with duration analysis, estimates are relatively robust: the signs 
on almost all estimated coefficients are the same as in the other 
three model specifications. However, many more estimates become 
significantly different from zero and the following discussion 
refers to the process formulation with the exponentiated polynomial 
intensity.

Previous refuel duration has a significant positive 
coefficient in France, Sweden, and Switzerland (and it is positive, 
although not significant, in Belgium, too). This implies that 
unplanned outages are more likely to occur after a long refuel 
outage. Two structural explanations are consistent with this 
finding: a long refuel outage may indicate the existence of

44 Although the log-likelihood for the Weibull baseline hazard 
is higher in the failure time formulation, this changes when 
including "up since refueling" as a regressor in the process 
formulation. I do not report this specification since I want to 
emphasize the conceptual distinction between the failure time and 
the process formulation.

45 It may be somewhat disconcerting to see a positive value of 
the log-likelihood function, but this is quite possible for certain 
parameter values. In contrast to the exponentiated quadratic model 
or to a Gompertz hazard, an exponential model always gives rise to 
a negative log-likelihood function value.
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particular problems that are likely to cause future outages. A 
typical example are problems with the piping system or the steam 
generator. A long refuel outage may also indicate that major 
repairs have been performed or new equipment has been installed and 
the higher outage rate is due to initial "teething" problems or a 
"shakedown" period.

The coefficient on capacity is negative and significant in 
Germany, Belgium, and Switzerland (and in Sweden for all other 
specifications except this one), but positive and significant in 
France. As discussed before, the negative coefficient may indicate 
successful design changes. The effect of plant age is not clear, 
but there is some indication (France, Germany, Switzerland) that 
newer units are less reliable, after controlling for plant design 
with the capacity regressor. This increase in unplanned outages is 
most likely due to an initial "shakedown" period new plants have to 
go through.

As discussed before, BWR's have been less reliable than PWR's 
in Germany, and the higher outage rate is reflected in a 
significantly positive coefficient on the BWR dummy. Sweden, on the 
other hand, has successfully developed her own design of BWR's. 
Having accumulated substantial experience with BWR’s before the 
begin of the sample period (7 BWR had been on line before 1981, but 
only 1 PWR), it is not surprising to see that BWR's were more 
reliable as reflected in the significantly negative coefficient on 
BWR. The negative coefficient on the BWR dummy in Switzerland may 
not be very meaningful, other than as an indication of the
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extremely good performance of the BWR Muehleberg (the second Swiss 
BWR, Leibstadt only contributed observations for one year).
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Table 15: Comparing Failure Time and Process Models

regressors are normalized to mean 0 and standard deviation 1 
regressors: constantup time since last refuel outage (only failure time) 

last refuel duration
age of plant (time since first commercial operation) 
capacity (MW)
BWR dummy (no BWR’s in France and Belgium)

Table 15a: Means and Standard Deviations of Regressors
country up since 

last 
refuel 
(hours)

last 
refuel 
duration 
(hours)

age
(hours)

capacity
(MW)

BWR
(dummy)

Belgium 4313
(3084)

921
(367)

66044
(29021)

631
(254)

no BWR

France 4055
(2919)

1669
(921)

32036
(16498)

908
(45)

no BWR

Germany 5119
(3428)

1428
(1401)

67633
(31201)

915
(296)

0.36
(0.48)

Switzer­
land

5250
(2920)

977
(290)

83259
(48435)

560
(289)

0.30
(0.46)

Sweden 3973
(2985)

1113
(490)

68817
(29912)

680
(177)

0.80
(0.40)
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Table 15b; France 585 spells
Process Model Failure Time Model

Baseline
Hazard

Expoquad Weibull Expoquad Weibull

mean logl +1.065 -1.3798 -1.1725 -1.175
up since 
last refuel

-1.0915*
(0.0728)

-0.9413*
(0.0653)

last refuel 
duration

0.0727*
(0.0252)

0.1179*
(0.0566)

0.1410*
(0.0479)

0.1276*
(0.0485)

age -1.5163*
(0.0298)

-0.1414* 
(0.0566)

-0.0106
(0.0545)

-0.0001
(0.0546)

capacity 0.0945*
(0.0369

-0.0258
(0.0501)

-0.0649
(0.0503)

-0.0651
(0.0508)

constant -1.9695*
(0.1206)

-0.1019 
(0.0872)

-0.8475*
(0.0926)

-0.6657*
(0.0573)

shape1 0.463*
(0.028)

0.6914*
(0.0315)

0.0253
(0.0678)

0.9158*
(0.0351)

shape2 -0.8458*
(0.1582)

0.9383
(0.8248)

Note; shape 2 is 100y (see equation (5) in part 1) is 
significantly different from 0 (from 1 for shape parameter in the 
Weibull hazard) at the 5% level.
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Table 15c: Germany 116 spells

Process Model Failure Time Model
Baseline
Hazard

Expoquad Weibull Expoquad Weibull

mean logl -0.3361 -1.5629 -1.2626 -1.252
up since 
last refuel

-1.5057*
(0.2236)

-1.222* 
(0.1806)

last refuel 
duration

-0.3570*
(0.0451)

-0.1341 
(0.1111)

-0.0446
(0.1077)

-0.0274
(0.1078)

age -0.0050 
(0.1132)

-0.0988
(0.2189)

-0.0686
(0.2130)

-0.0721
(0.2129)

capacity -0.3396*
(0.1019)

-0.2383
(0.2156)

-0.2042
(0.2047)

-0.1946
(0.2048)

BWR 0.2044*
(0.0832)

0.4117* 
(0.1502)

0.3418*
(0.1488)

0.3243* 
(0.1489)

constant -4.0526*
(0.4197)

-1.1197*
(0.2171)

-1.9187*
(0.3037)

-1.602*
(0.1906)

shape1 0.4742*
(0.0835)

0.6391*
(0.0757)

-0.0933 
(0.1557)

0.8014*
(0.0877)

shape2 -0.3989*
(0.4067)

1.7292
(1.5178)

Note: shape 2 is 100y (see equation (5) in part 1) * is 
significantly different from 0 (from 1 for shape parameter in the 
Weibull hazard) at the 5% level.
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Table 15d: Sweden 232 spells

Process Model Failure Time Model
Baseline
Hazard

Expoquad Weibull Expoquad Weibull

mean logl +0.0150 -1.3911 -1.1299 -1.159
up since 
last refuel

-1.4792*
(0.1391)

-1.192*
(0.1172)

last refuel 
duration

0.1510*
(0.0418)

0.0629
(0.0815)

0.0405
(0.0836)

0.03560
(0.0845)

age 0.3700*
(0.0588)

-0.0765
(0.1177)

-0.0194
(0.1172) -0.0020

(0.1168)
capacity 0.0269

(0.0715)
-0.4708*
(0.1510)

-0.3742*
(0.1408)

-0.3121*
(0.1386)

BWR -0.1633*
(0.0497)

-0.1353
(0.1014)

-0.0655
(0.1019)

-0.04380
(0.1012)

constant -2.6497*
(0.1938)

-0.02487
(0.1278)

-1.2455*
(0.1683)

-0.8622*
(0.0995)

shape1 0.5815*
(0.0404)

0.5864*
(0.0435)

0.1402 
(0.1050)

0.9590
(0.5962)

shape2* -1.8101*
(0.2048)

0.8277
(1.1519)

Note: shape 2 is 100y, (see equation (5) in part 1) * is
significantly different from 0 (from 1 for shape parameter in the 
Weibull hazard) at the 5% level.
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Table 15e: Belgium 84 spells

Process Model Failure Time Model
Baseline
Hazard

Expoquad Weibull Expoquad Weibull

mean logl -0.5228 -1.5839 -1.2175 -1.254
up since 
last refuel

-1.5488*
(0.2400)

-1.290*
(0.1967)

last refuel 
duration

0.0592
(0.1054)

-0.1516
(0.1939)

-0.2024
(0.1828)

-0.1803
(0.1836)

age 0.1019
(0.0769)

-0.0335
(0.1862)

0.0326 
(0. 1904)

-0.1803
(0.1892)

capacity -0.2556*
(0.0773)

-0.2065
(0.1758)

-0.0029 
(0. 1839)

0.0102
(0.1848)

constant -2.9037’ 
(0.3415)

-0.6619*
(0.2249)

-1.5181*
(0.3171)

-1.217*
(0.1914)

shape1 0.5822*
(0.0697)

0.7489*
(0.0936)

0.0964 
(0. 1906)

1.072
(0.1130)

shape2 -1.6773*
(0.3382)

1.2040
(1.9788)

Note: shape 2 is 100y (see equation (5) in part 1) ’ is
significantly different from 0 (from 1 for shape parameter in the 
Weibull hazard) at the 5% level.
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Table 15f: Switzerland 43 spells

Process Model Failure Time Model
Baseline
Hazard

Expoquad Weibull Expoquad Weibull

mean logl -1.4281 -1.2063 -0 .6296 -0.7151
up since 
last refuel

-3.8197*
(0.7960)

-2.516*
(0.5138)

last refuel 
duration

1.0069*
(0.1583)

0.4945
(0.2730)

0.0542
(0.3038)

0.04607
(0.3048)

age -1.4723*
(0.4927)

-2.1182*
(0.9476)

-1.5054 
(0.8800)

-1.528
(0.8754)

capacity -1.1297* 
(0.4305)

-1.5176
(0.8286)

-1.4233
(0.8407)

-1.472
(0.8463)

BWR -0.4861*
(0.1909)

-0.5004
(0.3435)

-0.5214
(0.4006)

-0.5815
(0.4088)

constant -2.8801*
(0.6925)

-1.8171*
(0.4155)

-5.4990*
(1.3310)

-3.123* 
(0.5944)

shape1 -0.4951*
(0.2298)

0.5624* 
(0.1353)

0.6120
(0.3691)

1.048
(0.2070)

shape2 7.95116*
(1.7482)

-0.9607
(3.1224)

Note: shape 2 is 100y (see equation (5) in part 1) is
significantly different from 0 (from 1 for shape parameter in the 
Weibull hazard) at the 5% level.
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Table 16: Length of Operating Cycle (in days)

Country Mean Standard
Deviation

Minimum Maximum N

Belgium 326 47 283 475 14
France 340 43 235 459 43

(351) (68) (235) (660) (45)
Germany 307 78 38 448 26
Sweden 347 81 223 586 28
Switzerland 305 81 6 342 16

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

fa
ilu

re
 

in
te

ns
ity

Figure 19: Repairable Systems

CM

(/)C CM
c o

CM

CD

time

systems with 2, 20, 200 components, increasing hazard rate

o

q
CM

CM

03o
^ Ld o K32 4

systems with 2, 20, 200 components, decreasing hazard rate

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

de
ns

ity
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3.3 Can the statistical model explain time paths? A simulation
study

Goodness-of-fit statistics, used in section 3.1, allow to 
evaluate how well different statistical models describe population 
data. A different way to evaluate the performance of statistical 
models is to compare their predictions of time paths with actual 
time paths. The focus of this alternative approach is to simulate 
medium to long run behavior and the dynamics of successive spells, 
rather than analyzing short run behavior, central to an analysis of 
individual spells.

The simulations are only done for France; the reason was that 
I could not obtain a useful estimate of the empirical time paths 
for a reasonably long horizon in any other country. To obtain the 
empirical time paths I used the following method: set time to zero 
at the first observed start up from refueling for each plant. 
Evaluate the state of the plant (states 0,1,2,3,4 as in figure 1, 
chapter 2) at t=l,...,60 where time is in months and calculate the 
probability of being in any particular state by dividing the number 
of plants found in each state by the total number of plants 
observed in that month. This gives the empirical point probability 
of being in any particular state. Consistent with section 2.3, I 
call the point probability of being in the running state "point 
availability". The time is plant time, but it is measured from the 
first observed restart from refueling, not from first criticality
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or the begin of commercial operation46.

The ragged empirical estimate of the point availability in 
figure 22 obscures the main features. Therefore I smooth the raw 
estimate using a cubic spline smoother (see appendix 2) with 
smoothing parameter ct=10. The smoothed empirical time path is 
compared to two simulated time paths in two figures, one showing 
the first 24 months (figure 23), the second showing the first 60 
months (figure 24). The number of plants in the sample drops 
substantially and the estimates become rather unreliable after 24 
months; there are between 30 and 40 observations in the first 12 
months and between 4 and 6 in the last 12 months. A confidence band 
would be very wide throughout and I therefore omitted it47. The two 
simulated time paths, both based on 500 replications and smoothed, 
correspond to the Markov model of chapter 2 (dashed line) and a 
point process model (dots and dashes). The parameters for the 
Markov model are the ones in table 1, column 2 (chapter 2). 
Clearly, the Markov model fails to model the long run waves and the

46 Although plant time could be measured from first criticality 
or first commercial production, it is not particularly useful. The 
first cycle length has a very high variance for plant specific 
reasons, obscuring regularities of plant operations. Another 
alternative would be calendar time which evaluates the impact of 
structural breaks in regulation or the effect of changing fuel 
prices. This could be of interest for some data sets, but my data 
set is short and spans the (relatively quiet) years between the two 
major nuclear accidents (1981-1986).

47 An approximate confidence interval could be calculated by 
considering each point availability as sampling from a binomial. 
For an availability of 70% and a sample of 40 plants an approximate 
95% confidence interval would be [0.56,0.84], for 4 plants it would 
not fit on the plot anymore.
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system converges to an almost steady state much too quickly.
The point process model is based on the simplest specification 

possible that captures the main features: the length of the
operating cycle (the operators decision to shut down the plant for 
refueling), the refuel duration, and the duration of unplanned 
outages (only one type is considered) are random draws from gamma 
distributions with two parameters, the point process intensity is 
an exponentiated quadratic polynomial. Thus the point process model 
has only one more parameter than the Markov model; parameter values 
are in table 17. The time path is very close to the empirical time 
path, the most salient discrepancy is a small phase shift, and it 
could be made even closer by using more elaborate distributions. 
Alternatively, different simulations can be compared by the sum of 
squared deviations from the empirical point availability48.

Figure 24 plots the complete time path for 5 years. 
Unfortunately, the empirical estimate is very unreliable. The cubic 
spline smoother allows to take into account the higher variance 
towards the tail, but I face a dilemma: heteroskedastic smoothing 
decreases the amplitude and makes the empirical path look like the 
simulated point process. However, this might be an artifact since

48 This was suggested by Frank Wolak. I summed the squared 
deviation calculated at the end of each of the 60 months without 
weighting (one could also use the integral of squared deviations 
and/or weight by the number of plants observed). The sums of 
squared deviation from the empirical point availability are: 0.77 
for the "naive" model of descriptive statistics, the mean point 
availability, 0.75 for the Markov model, and 0.71 for the point process model.
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the point estimates, although unreliable, indicate that the 
amplitude does not decrease. I decided to use homoskedastic 
smoothing which shows up as a discrepancy between the point process 
path and the empirical path in figure 24.

Discrepancies between simulated statistical models and 
empirical time paths in the plots are have three causes: amplitudes 
frequencies, and levels. Each of them may point to a different 
inconsistency between statistical model and reality.

Amplitude
A decreasing amplitude is typical for an ergodic process. 

Markov or semi-Markov models are ergodic, but inconsistent with the 
data as demonstrated by the rejection of the renewal assumption 
(section 2.2) and the plots here. The implementation of the point 
process is ergodic, but this could easily be changed. For example, 
the plant manager might choose the operating cycle length such that 
the plant is refueled at constant intervals. The next chapter 
develops a behavioral model of how the operator chooses the 
operating cycle length which gives rise to a time path whose 
amplitude is declining more slowly. It is not clear from the data 
which assumption is correct. The homoskedastic smoothing does not 
show decreasing amplitudes, the heteroskedastic smoothing shows 
decreasing amplitudes very similar to the simulation of the process 
model in figure 24. A longer panel would be necessary in order to 
decide this problem.
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F r e q u e n c y

There is a slight difference between the phases of the 
simulated process path and the empirical path in the first two 
years (the difference increases substantially afterwards, but this 
is likely to be noise). I attribute this difference to the effect 
of plant time. Many of the plants in France came on line during the 
observed period, the main reasons for the sharp drop in 
observations after two years. Fuel cycles in the early years of the 
plant are different than later fuel cycles when the core has 
reached an equilibrium configuration. The process model was 
estimated treating all fuel cycles the same (no regressors were 
used in the simple simulation). Another possibility, irrelevant for 
France, but probably of significance in the U.S., could be the 
effect of calendar time. In the U.S., fuel cycles have become 
longer over time (EPRI, 1987,1989), but not in Europe. In fact, 
some German plants have even shortened their fuel cycles in order 
to improve fuel efficiency (Biblis A and B).

Levels
The empirical point availability lies above the simulated 

point availability for most of the latter part of figure 24. The 
likely reason for this is the change in the sample composition. The 
plants which contribute observations to the tail finished their 
first fuel cycle before 1980. If there exists learning effects in 
plant age (see section 2.4), we expect these plants to be more 
reliable than the "average" plant for which the process model was
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estimated. Again there might be an additional effect of calendar 
time, plant availability has risen over time, but I expect it to be 
minor. In a longer panel, however, the calendar time effect may be 
important, especially if the period of observations covers 
structural breaks such as the TMI or Chernobyl accidents.
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Table 17: Parameter values for simulating point process

gamma distribution time
measured
in

beta rho

unplanned outage 
durations 
(spell time)

days 6.93 0.65

refuel durations 
(spell time)

days 16.23 3.93

operating cycle 
lengths 
(cycle time)

days 6.41 52.36

point process 
exp(Y1+Y,t+y,t2) Yi y2 y3
failure intensity 
(cycle time)

months -0.265 -0.240 0.015
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4. A structural economic model of operating cycle management

The aim of this chapter is to model and estimate the 
production process in nuclear power plants in five European 
countries at a structural economic level. Rather than abstracting 
from the actual production process as in the standard "black box" 
approach embodied in neoclassical production theory, I explicitly 
analyze a plant operator's production decisions in the context of 
controlling a stochastic process. Focusing on operating cycle 
management, this approach brings together various measures of the 
performance of the nuclear power industry such as availability, 
unplanned outage rates, and planned outage durations in a unified 
dynamic economic model. Under the assumption that plant operating 
experience reflects the optimal solution of a stochastic control 
problem, I estimate a plant operator's utility (cost) function from 
the operating history of the plants instead of relying on exogenous 
cost measures. The advantages of this approach, which is analogous 
to a revealed preference analysis in the theory of consumer demand, 
are two-fold: not only does it circumvent the problem of having 
little reliable information about the operating costs in European 
nuclear power stations, but important intangible cost components, 
such as the public's or the regulatory authorities' reactions to 
unplanned failures, can only be captured in this way. Using the 
resulting "cost function" parameter estimates, chapter 5 discusses 
how the model relates the variation in different performance 
measures across countries to differences in their
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economic/regulatory environment. There it will be shown how one can 
calculate the policy effects of changing relative prices through 
taxation or regulatory penalties within each country.

Rather than relying on assumptions that guarantee a closed 
form expression for the likelihood function, I use an "algorithmic" 
approach, i.e. the likelihood function is defined only implicitly 
as the solution to an economic decision problem (see chapter 1). 
The approach liberates the researcher from having to make a priori 
assumptions regarding functional forms. Unfortunately, as previous 
authors following this recently introduced methodological approach 
have found (e.g. Miller, 1984, Pakes, 1986, Rust, 1987, Wolpin,
1987), the conceptual advantage of precise modeling of the economic 
problem is bought at the cost of increased computational demands 
which themselves tend to be limiting.

The model is related to duration analysis and behavioral 
economic duration models49, but there are several conceptual 
differences. While duration models typically deal with a single 
failure cause50, the production process in power plants may be 
interrupted by a number of different events (competing risks) with

49 Examples of this type of research are Wolpin (1987), who 
considers the decision of when to accept the first full time job 
after leaving school, Rust (1987), who models the decision of a 
manager when to replace a bus engine, and David and Mroz (1989), 
who estimate a model of fertility regulation from data on sequences 
of birth intervals.

50 In Wolpin (1987), the "failure" that ends a spell is the 
decision to take a job, in Rust (1987), it is the replacement of 
the engine, in David and Mroz (1989), it is conception leading to 
a live birth. Ryu's model (1990) is an exception; he derives an 
estimator for a bivariate duration model, but his work is 
theoretical and offers no application.
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different effects on the statistical properties of the system. As 
discussed in chapter 3, most events will not regenerate the system 
as they do in renewal processes, i.e. a power plant is not "new" 
after starting up from an equipment failure and intervals between 
successive events are not independent. Furthermore, plant managers 
have a choice between different repair and maintenance actions, and 
downtime durations for refueling are not negligible. The typical 
assumption in microeconomic studies of replacement/maintenance 
problems (e.g. Rust, 1987, Ryu, 1990) has been that only a single 
action is available to the agent and that this action immediately 
regenerates the system.

4.1 Descriptive statistics for the sample
I select a restricted sample of plants for the analysis in 

this chapter. Some reactors are prototypes representing different 
technologies (Fast Breeders, High Temperature Reactors), some 
operators are unreliable in reporting their outages (e.g. KKP, the 
operator of the two Philippsburg units in Germany), and focusing on 
operating cycle management eliminates technologies that do not have 
such cycles such as the old gas-cooled French units and Canada's 
CANDU reactors. I further restrict the sample by only considering 
commercial LWR's that began commercial operation between 1970 and 
1980 and for which there is information on all years. Therefore we 
have technically very homogeneous plants in each country. Although 
the renewal assumption during refuel outages was not rejected 
(section 2.2), the reliability growth model of section 2.4
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indicated, not surprisingly, that new plants starting operation 
undergo a learning period. The learning process leads to complex 
behavioral models which I plan to investigate in the future, but 
which are outside the scope of this dissertation. One such 
behavioral model has been analyzed in Sturm (1989b). It is also 
well known that the first fuel cycle has very different 
characteristics than the following cycles for technical reasons; 
already the second and third cycle are very similar to later ones. 
Finally, it seems inappropriate to pool data from different 
countries; all preliminary tests of homogeneity convincingly 
rejected the null hypothesis that different countries have the same 
operating experience (see both the descriptive statistics of 
chapter 2 and the following tables for the sample analyzed here). 
Since I could not pool, I had to ignore a few orphans: 1 BWR each 
in Switzerland and Germany, 1 PWR in Sweden. The remaining sample 
contains 28 plants (3 in Belgium, 11 in France, 5 in Germany, 6 in 
Sweden, and 3 in Switzerland) . To avoid the problem of left 
censoring, the operating histories were considered from the start 
up after the first observed refueling.

To indicate the magnitudes involved, I have calculated the 
commonly reported descriptive statistics. Availability and capacity 
factors, defined in chapter 1, are reported in table 18. The only 
major difference between these two measures is for France in 1986. 
France brought many new plants on line in the 80's and the 
overcapacity resulting by the end of the decade has reduced 
capacity factors by more than five percentage points below

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

availability. The first effects of generating capacity out­
stripping demand became visible around 1985/86.

Table 19 reports statistics on unplanned outages that were 
safety- or reliability-related, and for which the plant manager was 
held responsible. The unplanned outage rate addresses a different 
aspect of plant performance. Almost all of these outages involved 
scrams initiated by equipment failures during plant operation or 
testing, or by operator error. Some outages due to more controlled 
shutdowns for unplanned repairs are also included. Outages 
unrelated to reactor operations per se, such as labor disputes or 
grid failures, have been excluded51. In Germany and Switzerland, 
there were 1 or 2 unplanned outages per reactor year; the unplanned 
outage rate in Belgium averaged about 3, it was about 4 in Sweden, 
and even higher in France. This is even true for all plants, not 
just the sample selected for this analysis (see the survivor 
function for reliability in chapter 2).

Table 20 shows that the durations of unplanned outages account 
for only a small proportion of total time (the sum of all up- and 
downtimes) and are therefore almost negligible from an economic 
point of view. However, the occurrence of unplanned outages is 
likely to remain important (the reliability issue) since failures

51 A small discrepancy (3 to 5 percentage points) exists 
between the availability factor in table 18 and its breakdown into 
planned and unplanned unavailability in table 20. There are two 
reasons: the availability and capacity factors in table 18 include
a) the effects of such exogenous outages and b) partial 
unavailabilities, i.e. output losses which are not due to a full 
shutdown and which are not reported. These losses are therefore not 
included in the breakdown in table 20.
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are highly visible and, due to their relationship to actual and 
perceived safety, could affect the whole industry. These intangible 
costs accrue in addition to the direct costs of repairing defective 
equipment and the substantial wear on the plant caused by a scram. 
Compared to unplanned outage durations, the durations of planned 
outages account for a substantial part of total time.

Utilities in Europe have operated on planned fuel cycles of 
approximately 12 months. This is in contrast to U.S. utilities, 
many of which have lengthened their planned cycles to 18 or even 24 
months (see EPRI, 1987, 1989). In recent years (after the end of 
the sample period), some utility companies in Europe, in particular 
in Belgium, have introduced longer cycles, mainly for newer plants 
(the sample only contains plants that were on line by 1980). 
Sweden, where there may have been longer planned cycles even within 
the sample period (some realized cycles were unusually long), might 
be an exception. However, Sweden's reactor technology (BWR) is 
somewhat different from that in other countries (all other reactors 
in the sample are PWR). In contrast to planned cycles, realized 
cycles (excluding refueling) have a substantial variation, the 
standard deviation is approximately 1 1/2 months in Belgium and 
France and over 2 1/2 months in the other countries (see table 16, 
chapter 3); this does not change when the refuel duration is 
included. Some cycles were truncated very early whereas some cycles 
lasted over one year. Why does this happen? Do plant manager 
randomly deviate from the carefully planned the original cycle? The 
approach taken here is that some conditions have changed and that
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the variation reflects new information about the environment that 
the plant manager takes into account but which we cannot observe. 
For example, an unexpected period of very low replacement energy 
costs (e.g. low demand due to mild weather) or discovering that the 
costs of an equipment failure are higher than usual (maybe due to 
technical problems in other plants and a suspicious regulator) may 
make it opportune to refuel earlier. Similarly, manpower 
constraints (additional shift or overtime expenses), high energy 
replacement costs, or less than expected use of fuel can make it 
desirable to operate the plant longer than planned. Of course, the 
cycle length will be limited by the amount of burnable fuel 
available and the need to comply with (or at least not violate 
blatantly) regulations such as authorized limits for fuel burn up. 
Unfortunately, the main causes which allow stretching the cycle are 
not observable. They include the effects of partial outages and 
operator action (so-called core-preservation operations) and we 
will have to incorporate them into an "error" term describing our 
ignorance about important decision variables. Unplanned full 
outages, which also save fuel, are reported, but their overall 
effect is smaller and will therefore be modeled with the unobserved 
effects. As always, a rule must have its exceptions and, indeed, 
there are two fuel cycles in France where some very unusual 
unplanned outages have a clear causal effect on fuel cycle length. 
In table 16, chapter 3, the statistics in brackets for France 
include these two cycles, but the two cycles are excluded in the 
analysis of this chapter.
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Table 18: Availability and Capacity Factors

Country Availability 
in 1986

Capacity 
Factor in 

1986

Cumulative
Availability

Cumulative
Capacity
Factor

Belgium 
3 units

67.8 65.8 78.1 78.0

France 
11 units

79.7 73.4 73.9 69.6

Germany 
5 units

72.3 69.6 77.1 75.4

Sweden 
6 units

82.8 80.9 76.5 73.4

Switzer­
land 
3 units

84.9 84.5 82.6 82.1
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Table 19: Unplanned Outages 1981-1986

Country Unplanned
Outages

Unplanned Outage Rate 
per Reactor Year

Number of 
Reactors

Belgium 53 2.94 3

France 335 5.08 11

Germany 30 1.00 5

Sweden 138 3.90 6

Switzerland 12 0.67 3
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Table 20: Planned and Unplanned Outage Duration as Proportions of 
Calendar Time

Country Unavail­
ability due 
to Planned 
Outages in 
1986

Lifetime 
Unavail­
ability due 
to Planned 
Outages

Unavail­
ability due 
to
Unplanned 
Outages in 
1986

Lifetime 
Unavail­
ability 
due to 
Unplanned 
Outages

Belgium 0.28 0.15 0.02 0.03

France 0.12 0.17 0.06 0.07

Germany 0.23 0.16 0.00 0.03

Sweden 0.09 0.13 0.03 0.05

Switzer­
land

0.12 0.12 0.02 0.03
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4.2 The conceptual model of plant operations and the plant
manager's decision problem

There are two conceptually different parts to the economic 
model of fuel cycle management. One part deals with the exogenous 
technical system, which I call the plant model, the other part is 
the plant manager's control of this mechanism. The model of the 
exogenous mechanism, which can be estimated using standard 
techniques (see section 4.3), is built on the results of chapter 3 
and I only describe it briefly before considering the control 
decision. Being able to estimate the exogenous process separately 
permits a two-stage procedure which substantially simplifies 
estimation of the plant manager's cost (or utility) function. The 
technical plant process is assumed to be exogenously given and the 
manager cannot change its characteristics. This assumption, made 
throughout the chapter, is appropriate for existing production 
facilities in a stationary environment. Nevertheless, differences 
in the plant process between countries exist and these differences 
reflect institutional and environmental factors that are not 
captured by the behavioral model.

We can observe that utilities attempt to return the plant to 
the running state as quickly as possible if an unscheduled event 
occurs and such outages often last only a few hours. Minimal 
necessary repairs are performed during these outages which affect 
a small part of a complex system. During refuel outages, however, 
we observe extensive maintenance and inspection activities in which

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

sometimes more than one thousand people, often from outside the 
plant, are involved. To distinguish the two activities, I consider 
two stylized actions: one is to repair the plant upon failure which 
returns the unit to its operating state but does not change the 
current state of degradation, the other is to shut the plant down 
for refueling and maintenance which resets the degradation process. 
Unless the plant is shut down for a major overhaul (refueling), it 
is always better to repair broken equipment immediately than 
leaving the plant down. The minimal repair then becomes part of the 
plant model and is not considered as a control variable any longer. 
The observed operating history can be modeled as a sequence of 
censored point processes. A point process, causing the (immediately 
rectified) unplanned outages, begins when a plant restarts after 
refueling and is censored when the plant manager decides to take 
the plant down for the next refueling. The statistical assumptions 
in this model have been spelled out and justified in chapters 2 and 
3.

Fuel cycles consist of two durations which are controlled by 
the plant manager within limits. The first is the duration of the 
operating cycle, i.e. the interval between the startup after one 
refuel outage and the beginning of the next refuel outage. The 
second is the duration of the refuel and maintenance outage. 
Although the plant manager can always decide to shut down the plant 
immediately for refueling, the decision to bring it up is subject 
to regulatory and technical constraints. The combined effects of 
the plant manufacturer's recommendations, "sound engineering
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practice", and regulatory constraints may be such that the refuel 
duration is a random variable beyond the immediate control of the 
plant manager52.

When Is The Plant Refueled?
Although it is convenient to estimate the exogenous plant 

process in continuous time, as I have done in the previous 
chapters, the decision problem, which is the central element of the 
complete model, is best set up as a dynamic programming problem in 
discrete time. Conceptually, this entails no loss of generality 
because a continuous (Markov) decision model can be approximated 
arbitrarily closely by a discrete model (van Dijk, 1984). As a 
practical matter, Bellman's "curse of dimensionality" will require 
restricting the size of the state space to keep the problem 
computationally manageable.

In each time period, the plant manager observes that the plant 
is in one state of a state space S. After observing the state of 
the process, the plant manager must choose an action from the 
control set A. Independent of the past, the plant manager incurs a 
reward (costs) R(s,a), a function of state seS and action aeA. Then 
the next state of the system is chosen according to a transition 
function P :SxSxA-»[0,1 ] such that for each s'e S, P(s',.,.) is a

52 This will be ,the assumption throughout this chapter. The 
data must be discretized to solve the dynamic programming model and 
this discretization makes it impossible to distinguish a structure 
in refuel durations. Given the data and computer limitations, I 
have to focus on the phenomenon with the highest variation and that 
is without any doubt the duration of the operating cycle; see the 
density plots for operating cycle and refuel durations.
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probability measure on (S,S,A).
The choice of actions is between repairing malfunctions that 

occur randomly or shutting down the plant for refueling and major 
overhauls, i.e. A has two elements for all states. The action has 
no effect when the plant is in a refuel state53. The agent chooses 
a policy (or plan) 0 which is a sequence of functions n = {IIn} ,  

n=0,l,... from S to A. The economic problem is to find a policy 
that maximizes the plant manager's optimality criterion. A 
stationary policy II is defined as a time invariant function II* 
mapping S into A.

I assume that the plant manager maximizes a time separable 
utility function with discount factor /3<1:

One of Blackwell's (1965) results is that if A is finite and 
R() is bounded, there exists an optimal stationary policy. The 
optimal value function V() = supnVn() under such a policy satisfies 
the functional equation and the solution to the functional equation 
is unique.

This result is important since it allows calculating the 
optimal value function by finding the fixed point of the functional

53 Remember that refuel duration is assumed to be a random 
variable beyond the plant manager's control (footnote 52).
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equation. When considering unobservable states to accommodate the 
fact that we ignore some important information, it may be desirable 
to allow for unbounded returns and costs and we need conditions 
under which the value function under the optimal solution remains 
the unique fixed point. Rust (1988, Theorem 3.1) gives conditions 
under which there exists an optimal stationary Markovian policy 
satisfying the functional equation. Lippman (1975) provides an 
alternative set of conditions.

No matter how detailed our observations are, they will never 
be complete to the extent of including all important time varying 
decision variables such as energy replacement costs or scheduling 
constraints. These unobserved variables are the cause for observed 
deviations from the initially planned annual operating cycles and 
they trace out the plant manager's cost function conditional on the 
initial plan. We would be able estimate the "envelope" cost 
function only if the initial plan had no economic impact, i.e. in 
the implausible case that there is no cost for deviating from it. 
Since the planned cycle length was the same in all countries, the 
estimates are comparable.

Partition the state space into two subspaces S = X x Y, where 
the data provides information only about X. With exception of the 
refuel state, there are two dimensions in the observable state 
space X: one dimension represents the time since the last startup 
from refueling and the other dimension counts the number of 
unplanned outages that occurred in the discrete time interval. The 
rewards/costs incurred during the operation of the plant are
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functions of both the observed and the unobserved states and of the 
action taken by the plant manager R(x,y,a). I will assume that the 
reward function has the additive form

R{x,y ,a) = R(x) +g (y, a) (61)
The unobserved state that enters the reward is a random function of 
the action chosen. Furthermore, the unobserved states only affect 
the reward function, not the transition function. This last 
assumption is not innocuous since it rules out unobserved states in 
the technical process such as plant specific problems. I minimize 
this potential misspecification by considering groups of homogenous 
plants. There remains the possibility of fuel cycle specific 
technical heterogeneity, but modeling this possibility by using a 
nonparametric random coefficient model is not successful: the 
variance of observed durations requires a very large number of 
points of support relative to the number of cycles and the maximum 
likelihood estimates imply a zero probability for cycle durations 
that are not observed. A model allowing for a large range of 
different values (such as a Gamma mixing model) creates a 
dimensionality problem which renders estimation impossible on any 
computer that I have access to.

The dynamics of the model are the following: The plant manager 
observes the states x and y and then chooses an action a. Based on 
the states and the action chosen, the plant manager receives the 
reward or pays the costs. Then time is advanced by one unit, here 
one month, and the exogenous process moves to a new state according 
to the transition function corresponding to the chosen action. If
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the plant manager decides to refuel, the plant is in refueling with 
probability 1 in the next period; if the plant manager decides to 
keep the plant up, the state is chosen according to the exogenous 
process. The monthly (conditional) probability of leaving refueling 
is a constant (<1) since only one refuel state is considered.

There is a vector of constant parameters 0 known to the plant 
manager, which represent the discount factor, parameters of the 
cost function and parameters of the point process. The likelihood 
function of the observed data is the product of a transition 
probability and the probability that the plant manager chooses 
action a. Let P(x'|x,a,0) be the marginal transition probability 
function and Q(a|Hn,0) be the conditional probability of choosing 
action a given the observed history up to and including state n54. 
The contribution to the log-likelihood function for a plant which 
is observed for N stages is

1(0) =X) {l°gQ (a n\H n> 0) +logPx(xJ xn-l'ajj-l'0^ <62)
n=l

with x0 and a0 being given constants; we begin observations with a 
startup from refueling. If we did not observe the startup, the 
left-censoring problem would make estimation impossible without 
extremely strong and unappealing assumptions. This is similar to

54 When the plant is in the refuel state and the plant manager 
does not take the plant down for refueling (i.e. does not censor 
the point process of unplanned outages), the marginal transition 
probability P() is the discrete version of the point process 
discussed before.
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left-censoring in failure time models (e.g. Heckman and Singer, 
1985). The difficult problem is to obtain P() and especially Q()/ 
which is implicitly defined and needs to be calculated from a 
numerical solution of the dynamic program.

4.3 Econometric Specification
None of the previous discussion depended on any particular 

parametric assumption. Several different parametric models for the 
exogenous plant process and the plant manager's cost function have 
been estimated for one parametric model for the unobserved states. 
Notationally, it is convenient to split the vector of parameters to 
be estimated (0 ) into the parameters of the exogenous process (y)/ 
the parameters of the cost or reward function (r,c), and the 
discount factor /3.

4.3.1 The exogenous plant process
A factor limiting the applicability of standard parametric 

intensities, such as the Weibull or the log-logistic hazard, to 
estimate the point process generating the unplanned outages is the 
empirically documented "bathtub" shape of the intensity function of 
both repairable systems and nonrepairable systems (see section 
3.2). Because ignoring the empirical regularity of a non-monotone 
hazard may cause very misleading statistical estimates, I have also 
estimated flexible intensity models to ascertain the robustness of
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the results55. The additive models have a theoretical justification 
in complex systems with different failure modes and can estimate 
the relative importance of different modes. In particular, the sum 
of a Weibull and a Gompertz intensity models the effects of wear- 
out failures and of initial "shakedown" or "teething" problems (see 
section 3.2)56. Since the discretization of the data is only 
necessary to solve the control problem, I first estimate the 
parameters of the discrete transition function P() corresponding to 
the occurrence of unplanned outages using the original data and the 
continuous point process models. Although separating the exogenous 
process and the economic decision in this two-step procedure may 
cause some efficiency losses, these losses are likely to be more 
than offset by the gains of using the additional information in the 
non-discretized data which would not be possible in a full maximum 
likelihood model. The failure rate is modeled as follows:

Each operating cycle i has an intensity Ai(t,y) of having 
unplanned outages, where y is a vector of unknown parameters, and 
is observed over the finite interval (f±) . To simplify notation, I 
drop the dependence on y. For a sample of n such operating cycles

55 If the intensity function is indeed bathtub-shaped, an 
intensity function imposing monotonicity can give negative, 
positive, or no duration dependence, depending on when the plant 
manager decides to interrupt the process. The estimates of the 
exogenous process have a major impact on the estimates of the cost 
function and an unjustified restriction in the plant model could 
lead to meaningless cost function estimates.

56 New or repaired units tend to suffer from lower performance 
at the beginning as installation errors are rectified and 
substandard components replaced.
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with fixed censoring time T± and observed unplanned outages at 
times 0=t1o<tii<ti2<. . . <tim<T1 for process i, we have the 
log-likelihood function:

23 n
k . ) = E E  {logl (tdj) -A ( 2 tdj) }- ̂ 2 A’ (tims Tî

i=1 (63)
-it l o g - J ^ A ( 0 ,Td)
i=1 j'=l i=1

This assumes that the censoring variable TA was constant or 
at least noninformative (Kalbfleisch and Prentice, 1980) in which 
case 1(.) can be interpreted as a conditional likelihood for which 
all the usual properties hold (Cox and Hinkley, 1974). However, T± 
is a control and therefore a function of the environment the plant 
manager faces, including economic incentives and the process 
itself. Then the full likelihood will involve a term describing the 
distribution of TA as a function of y and other parameters which 
reflect the plant managers cost function. Nevertheless, it is 
possible under appropriate assumptions to interpret equation (63) 
as a partial likelihood (Cox, 1975) and estimate the parameters y 
separately (Rust, 1988). The "appropriate assumptions" in this 
context require that unobserved information and missing variables 
only affect the cost function and not the plant process (see Rust, 
1988) .

Table 21 summarizes how the following parametric models for 
the exogenous plant process compare:
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A) an exponentiated quadratic intensity

X (t) = exp (Yi+Y2 t+Y3t2) (64)
B) a Weibull intensity

X(t) =exp(Yi) Y2tY2 1 (65)

C) the sum of two Weibull intensities

X (t) =exp (Yi) Y2tY2"1 + exP (Y3) Y4 (66)

D) the sum of Gompertz and Weibull intensities

A. (t) =exp (Yi+Y2t) +exp(Y3) Y4 tVl_1 (67)

In model A), the estimated coefficient on time squared is positive 
for all countries, implying an eventually increasing unplanned 
outage rate. I find the same phenomenon for the additive intensity 
of two Weibull intensities (C) and, for Belgium and Switzerland, of 
Gompertz and Weibull intensities (D) : the outage rate decreases 
following the start up from refueling, but increases eventually. As 
expected from the plot of empirical intensities (figure 25), the 
simple Weibull model (B) shows a negative duration dependence. 
Deciding between different parametric forms is difficult since all 
specifications describe the occurrence of unplanned outages well 
despite their apparent differences. To illustrate the results, 
figure 26 plots the estimated intensities for the four different 
specifications for two countries (A: solid line, B: long dashes, C: 
dots, D: short dashes); table 22 presents the parameter estimates
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for model A (standard errors in parentheses).

The plant manager's control decision
The only difficulty created by unobserved state variables is 

computational. But this is a rather serious problem because 
estimating the decision problem for a general statistical model for 
the distribution of these states is outside the range of today's 
computational possibilities. In two important papers, Rust (1987,
1988) showed that the assumption of conditional independence which 
restricts the dependence between unobserved states in different 
periods circumvents the computational difficulty. I will follow 
Rust's suggestion to model unobserved states. This assumption 
requires that the transition function factors as:

Ptx'.y'lx,/^) =q(y/|x/)p(^/|x,a) (68)
The value function is a function of all states V(x,y). The expected 
value as a function of the action a is now of the form:

EV(x,y, a)=]T jV (dy\x') p{x'\x,a) (69)
x' y

and the optimal value function is the unique solution to the 
functional equation

V (x,y) = max[R(x/y, a)+PEV(x,y,a) ] (70)
a

Let the vector of unobserved states y in any one period have a 
bivariate extreme value distribution with mean 0 (^=0.577) and 
density

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2
q(yi,y2)= JJ exp(-yi+n)exp(-exp(-yi+|i)) (71)

i=l

If the part of the reward function R(x,y/a) = R(x) + g(y/a) 
corresponding to the unobserved states is

fy, if the plant is shut down /•7o\g <y,a) otherwise ( }

the conditional probability of choosing action an, Q(an|Hn)/ has the 
relatively simple form

Q(a|i?)= Q(a|x). exptRU.a) ̂ EVU.a)}
exp{R{x,b) +PEV(x,ii)} (73)

beA

where EV is given as the unique solution to the functional 
equation57

EV(x, a) = lo9(]C exp(R(x//̂ ) +PEV(x',jb) ] )p {x'\x,a) (74)
X> beA

For estimation we have to keep in mind that both R() and P() depend 
on parameters. The log-likelihood function is

1(0)= J2 <logQ (ajxn, 0) +logp (xn\xn.lt an.lfQ)} (75)

where 0 includes the parameters of the plant process, the plant
manager's cost function, and the discount factor.
As mentioned before, I first estimate P() and then use the 
estimated parameter values as constants. In the second step, I

57 In order to simplify notation, I left out the dependence on 
constant parameters.
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maximize the function

li(0)= X){1°gQ(aJJ|.xn,e)} (76)
n=1

a procedure which yields consistent estimates (Rust, 1987, 1988).

For all cost specifications, one period of refueling incurs a 
constant cost r and there is no cost if the plant is running 
without incidents. In the simplest model, the plant manager incurs 
a cost c for each unplanned outage.
a)

c(t)=c0 (77)

It may be desirable to relax the restrictions of constant costs 
since the relative costs of unplanned outages to refuel outages 
could change over the duration of the fuel cycle; for example, 
unplanned outage costs might be highest in the middle of the cycle. 
I use the following dynamic functional forms for the cost of an 
unplanned outage:
b)

c(t)=c0+c1t (78)

c)

c( fc) = Cq+ĉ C+ĉ t2 (79)

d)

c(t) =c0+exp(c1t) (80)

Different failure modes (different types of unplanned outage) are
168
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likely to incur different costs. In particular, outages occurring 
during testing or due to replacement of substandard components 
might be less costly than outages due to failure of worn-out 
components. Unfortunately, there is no reliable data on failure 
modes since reporting conventions regarding the classification of 
outages are inconsistent. One of the major advantages of the 
additive intensity specification is that it can distinguish 
probabilistically between wear-out failures and "teething" problem 
following a start-up. The expected cost of an unplanned outage is 
the sum of the costs of all types of unplanned outages weighted by 
their probabilities.
e)

c(t)=J^pm(C)ca (81)
in

where m is the failure mode.
Table 2 3 summarizes the results for various cost functions and 

the exponentiated quadratic intensity plant model.
Allowing for a dynamic cost function improves the fit of the 

model significantly. Unfortunately, the data set is too small to 
permit reasonable precise estimates for these functions: estimates 
become unstable and standard errors increase dramatically for 
models with more than two parameters in the cost function58. The 
more sophisticated cost functions do not predict uniformly better

58 For example, the standard error for the parameter estimate 
of the cost of refueling per period in Switzerland increases from 
0.99 to 1832.97 when switching from cost specification a) to 
specification b) . Similar, although somewhat smaller, increases 
occur for other countries and specifications.
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than the simple specification a) with two parameters corresponding 
to a constant cost for each period of refueling and a different 
constant cost for each unplanned outage, although they fit the data 
better. In fact, because of their sensitivity, the cost functions
b) through e) do strictly worse than cost function a) for at least 
one country when used to predict the unplanned outage rate and the 
unplanned unavailability factor. For that reason, and because some 
implications of the behavioral model are most easily discussed by 
considering the cost function with two parameters (a), I use the 
estimates from model specification Aa) in the following discussion. 
The results for this specification are reported in table 24 
(estimates from the exponentiated quadratic polynomial in table 22 
were used to calculate the transition probabilities). The standard 
errors assume a fixed known transition function. Although
conceptually one could calculate the correct standard errors by
maximizing the full likelihood instead of using the two-step
procedure, the additional computational requirements are 
prohibitive. The nature of the model makes it also infeasible to 
obtain simple corrections. The estimates for Sweden did not
converge. This may simply be due to the randomness of the data, but 
it may also reflect the restrictiveness of the functional form and 
the fact that Sweden uses a somewhat different technology; it is 
the only country in the sample using BWR rather than PWR.

I cannot estimate the discount factor precisely, a problem 
that appears to be quite common in this type of models (Rust, 1987, 
Ryu, 1990) and which is not surprising given the size of the data
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set. Even for the simplest cost function, the likelihood function 
is almost completely flat and standard errors increase in order of 
magnitude. Nevertheless, it is worth emphasizing that I was capable 
of estimating a discount factor for one country (France), whereas 
Rust (1987) and other researchers were not capable of estimating 
any discount factor for their models. Fixing the discount factor 
does not change the estimates or the value of the likelihood 
function to any substantial degree59. More important than leaving 
the discount factor unrestricted is how the exogenous process and 
the cost function are specified. The results reported in tables 23 
and 24 correspond to a monthly discount factor of .99 
(approximately 13% annually), but even an unreasonably low discount 
factor of .9 (approximately 250% annually) gives similar results.

4.4 Discussion
The behavioral model describing the distribution of planned 

refuel outages (of the transition from the up state to the refuel 
state) complements the analysis of chapter 3 on the distribution of 
unplannned outages over time. In order to simulate time paths in 
section 3.3, a descriptive statistical model (a gamma distribution) 
of the distribution of planned shutdowns was previously used.

59 For example, for France and the model specification Aa, the 
changes in the estimated cost parameters between the model with the 
annual discount rate fixed at approximately 13% (monthly discount 
factor 0.99) and the model with estimated discount rate 
(approximately 3% annual) were less than 0.2. A 95% confidence 
interval for the discount rate ranges from 0% to 30%, and this is 
without taking into account the additional variation due to the 
fact that the exogenous process is estimated.
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Although the behavioral model cannot improve much upon the 
descriptive gamma distribution in terms of fitting actual data (the 
simplest cost specification of the structural model has the same 
number of parameters as the descriptive gamma distribution), it 
provides additional insights about the economic environment that 
cannot be obtained by a descriptive statistical model. The
interpretation of estimated parameters in an analysis of 
differences between countries is discussed in the next chapter. A 
further strong argument in favor of a structural model is that the
actions of the plant manager are not random events, in contrast to
the occurrences of equipment failures, which are unforeseen and 
stochastic. Therefore, the analysis of purposeful behavior proceeds 
differently than the analysis of mechanical systems.

A major advantage of the algorithmic approach taken here is 
that neither the form of the plant process nor of the utility 
(cost) function needed to be specified in advance. This was
desirable since there was no a priori knowledge regarding 
functional forms. However, I had to specify a priori a functional 
form for the distribution of unobserved states. Although this 
constraint may be relaxed when much more powerful computers become 
available, it is arguably a major shortcoming of the model in its 
current form.

1 7 2
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Table 21: Specifications for Plant Process (mean log-likelihood)

country Belgium
63

France
311

Germany
58

Sweden
164

Switzer­
land 30

Model A) -1.5917 -1.4155 -1.4765 -1.5102 -1.3493

Model B) -1.5940 -1.3836 -1.3889 -1.4354 -1.2442

Model C) -1.5940 -1.3746 -1.3856 -1.4323 -1.2210

Model D) -1.5883 -1.3654 -1.3256 -1.4112 -1.1516
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Table 22: The Exponentiated Quadratic Intensity Model:

country Belgium
63

France
311

Germany
58

Sweden
164

Switzer­
land 30

mean log- 
likelihood

-1.5917 -1.4155 -1.4765 -1.5102 -1.3493

yl -0.6370
(0.3254)

-0.0431
(0.1377)

-1.2477
(0.3709)

-0.2362
(0.1775)

-1.8709
(0.6607)

Y2 -0.1983
(0.1305)

-0.2806
(0.0592)

-0.41478
(0.1905)

-0.2153
(0.0679)

-0.3473
(0.3492)

Y3 0.0112
(0.0107)

0.01830
(0.0049)

0.02335
(0.0176)

0.0080
(0.0050)

0.0217
(0.0339)
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Table 23: Mean Log-Likelihood for Different Specifications60

country
N

Belgium
173

France
624

Germany
322

Sweden
386

Switzer­
land 195

Model Aa) -0.2152 -0.1297 -0.2207 *) -0.1307

Model Ab) -0.1339 -0.1228 -0.1677 -0.1676 -0.0582

Model Ac) *) -0.1223 -0.1673 -0.1672 *)

Model Ad) -0.1478 -0.1278 -0.1689 -0.1674 -0.0385

60 N is the number of observed periods, the log-likelihood is 
N times the mean log-likelihood. Specifications that did not 
converge are denoted by *); the discount factor is fixed at 0.99.
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Table 24: Cost Function Estimates with Model Specification Aa

country Belgium
173

France
624

Germany
322

Switzer­
land 195

mean log- 
likelihood

-0.2162 -0.1297 -0.2207 -0.1307

cost per 
refuel 
period (r)

2.5684
(0.4198)

5.4914
(0.6952)

1.5878
(0.3899)

1.6173
(0.9947)

cost per 
unplanned 
outage (c0)

6.1012
(2.7313)

8.9677
(1.8802)

9.7133
(3.3425)

101.76
(36.92)
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Figure 25: Empirical Failure Rate
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Figure 26: Predicted Failure Rate
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5. Economic Interpretation

The differences in the performance between countries reflected 
in the descriptive statistics of section 4.1 have two sources. One 
source is different incentives for operations, reflected in the 
"cost" function parameters, which lead to different performance 
characteristics for a given technical plant process. This source, 
which has been ignored in the literature, has been explicitly 
modeled in chapter 4. However, the model requires that the other 
source, namely differences in the exogenous plant process between 
countries, is taken into account. Different countries' plants may 
differ in technological operating characteristics because of 
different abilities to manage technology, institutional 
constraints, licensing procedures, or other factors. For 
convenience, this broad collection of factors impinging on the 
"exogenous" plant process can be labeled "X-efficiency" factors.

In theory, one could attempt to formulate an economic model to 
describe the "choice" of a particular plant process as a function 
of the foregoing institutional constraints, technological 
capabilities, or the organizational and informational structure of 
the utility company operating the plant. For example, the unplanned 
outage intensity in the plant process is low in German nuclear 
generating stations (compare table 19) due to a required design 
concept which automatically invokes corrective measures at the
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early stage of a transient to prevent reaching a scram61. The 
adoption of the more reliable plant process in German reflects a 
legal requirement: the 1976 amendment to the German Atomic Law of 
1960 requires all plants to embody best practice technology. The 
plant design in a country is determined to a substantial extent by 
licensing procedures which require the demonstration that the 
design is capable of handling certain assumed events such as a 
Loss-of-Coolant-Accident using prescribed models for calculations. 
These arguments lead me to believe that relative price differences 
(compared to differences in institutional constraints) could only 
play a minor role in explaining differences among the plant 
processes between countries.

The distinction between process control and choice of process 
is related to the distinction between operation and construction. 
Because I am concerned with plant operations in existing production 
facilities, I did not consider the more complex model, which can at 
best be done in the form of a qualitative case study. The current 
model demonstrates that overemphasis in the literature on observed 
availability or capacity factors as measures of productivity is 
misguided. The "productivity" or "inefficiency" measured by 
observed availability factors alone confuses the effects of 
economic differences (different cost functions) on the control of 
the plant and differences in the plant process being controlled.

51 The "phased safety concept", see Morimoto (1986) for this
and other reasons for international differences in scram rates.
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The present analysis permits these to be disentangled under the 
maintained hypothesis as will be shown below.

The estimated cost (utility function) parameters capture both 
pecuniary and nonpecuniary "psychic" costs ("tastes", "attitudes", 
risk aversion) because they are estimated from observed behavior. 
The estimated parameters can be related to actual monetary values. 
There are two possible approaches. One could fix the scale 
factors62 by a direct comparison between actual costs, which would 
show how actual tax payments or regulatory penalties affect the 
cost parameters. Another approach is to enlarge the state space 
formulation by including actual costs for different types of events 
as states. If the plant manager is cost minimizing, the residual 
should become smaller63. Both approaches would provide a partition 
into actual (pecuniary) costs and nonpecuniary costs which permits 
to test the strength of the economic theory: do plant managers 
minimize pecuniary costs, or does "taste" matter?

62 The normalizations that affect the scale factors are the 
variance of the unobserved states and setting the cost of 
generating electricity without incidents for one unit to zero. Rust 
(1987) discusses the connection between actual costs and the 
normalized parameter estimates in more detail.

63 In this formulation, a state is the cost or reward 
associated with a certain event (whereas in the current formulation 
it is the physical state). If the formulation is correct and the 
plant manager is cost minimizing, the estimated weights should be 
close to 1. A deviation shows that the plant manager puts more or 
less emphasis on the occurrence on certain events than a cost 
minimizing strategy.
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5.1 Comparative statics - how do cost changes affect performance
measures?

The comparative static results show the magnitude and type of 
changes in measures of different aspects of nuclear power 
performance that can be explained by the behavioral model. 
Different economic incentives for plant operations and their 
associated change in the parameters of the cost (utility) function 
change the plant manager's value function. This in turn alters the 
probability of observing a plant shutdown and has a direct effect 
on the operating cycle length, the unplanned outage rate, and the 
plant availability. Note that a descriptive statistical model of 
the distribution of refuel shutdowns cannot address such a 
question.

The effects of three different sets of cost parameters are 
illustrated for Germany and the model specification Aa (the two 
parameter cost function and an exponentiated quadratic polynomial 
for the unplanned outage intensity). The expected equilibrium 
values of the operating cycle length, the outage rate per year, and 
the unavailability due to refueling are shown in table 25 as cost 
function parameters vary from the estimated ones. The first set of 
values corresponds to the estimates, the next two columns 
correspond to hypothetical "policy experiments". In figure 27, 
which plots the hazard function of an observed refuel outage 
derived from solving the plant manager's maximization problem, the 
solid line corresponds to the estimated parameter values and the 
dashed and the dotted lines to the first and second "policy
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experiments". Figure 27 shows how the distribution of refuel 
shutdowns varies with changes in parameters. Relatively higher 
unplanned outage costs (or relatively lower refuel costs) lead to 
a lower unplanned outage rate and a higher proportion of 
unavailability due to planned outages. The economic model appears 
to capture the actual performance of the nuclear power industry; 
compare with the descriptive statistics in section 4 .1 how well the 
structural model using estimates predicts the actual values in 
Germany. Even with this simple specification (model Aa), I found a 
fairly close agreement between model predictions and actual 
performance in the other countries. None of the more sophisticated 
model specifications allowing for dynamic changes in the costs that 
the plant manager faces provided uniformly better predictions, even 
though some of them predicted better for one or two countries.
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Table 25: Comparative Statics

parameters r=l.59 c=9.7 r=5 c=10 oi—
i
ll0HIIH

mean operating 
cycle length 
in months

10.5 15.0 8.1

Unavailability 
due to Planned 
Outages

0.15 0.11 0.19

Unplanned 
Outage Rate 
per reactor 
year

0.83 1.18 0.66
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5.2 Productivity in an International Perspective
Many descriptive studies have demonstrated the existence of 

international differences in the performance of nuclear power 
industries. But one can only determine which of these differences 
can be eliminated by changing an plant manager's incentives after 
explicitly modeling and estimating a structural behavioral model. 
France is often considered a successful user of the nuclear 
technology because of a relatively high availability factor, 
especially when compared to the U.S. However, the behavioral model 
estimated in the previous chapter reveals that the incentive 
structure in France in skewed in favor of a high availability (low 
planned unavailability) factor: the relative costs of unplanned 
outages (with short average durations) compared to planned refuel 
and maintenance outages (with long average durations) are the 
lowest of all countries.

I consider two aspects of performance: the planned
unavailability factor and the unplanned outage (scram) rate. The 
assumption underlying the calculations is that the estimated 
parameters in different countries are directly comparable and that 
there is no important causal link between cost function parameters 
and differences in the plant process, i.e. that the differences 
unexplained by the behavioral model are "noise". This assumption 
essentially reflects the distinction between operating existing 
production facilities and constructing new ones. A causal link 
biasing the calculations could exist, for example, if the plant 
manager can choose between plant processes, i.e. if the plant

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

process is not a fixed datum but a control variable, as in models 
that consider the adoption of a technology. I have taken Germany as 
the reference point for these calculations.

Table 26 reports the ratio between the performance measure for 
a given country and the corresponding one in Germany. A higher 
value means "lower productivity" and I therefore call these ratios 
"inefficiency" indices. Comparing the model predictions of the 
"inefficiency" indices under the estimated specification Aa with 
the actual values of these indices (calculated from tables 19 and 
20) provides an informal assessment of the goodness-of-fit of the 
model. The predictions of the unplanned outage rate and planned 
unavailability match the actual values well, with the exception of 
the German-French comparison of unavailability. In terms of planned 
unavailability, France and Belgium appear to be comparable to 
Germany, but in terms of unplanned outages, they appear to be doing 
substantially worse. Switzerland is performing best with respect to 
both performance measures.

The indices of table 26 include both the differences in 
productivity as measured by the exogenous plant process and the 
impact of different economic environments. There are two possible 
ways to split economic and technical effects: one can ask what 
happens if plant managers in a country face different incentives 
while controlling the same plants as before (the approach taken in 
the previous section) or one can ask what happens if plant managers 
have to control a different process while the incentives structure
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remains constant. The first approach considers the effect of
economic changes, the second approach considers the effect of
technical changes. Here, the second approach is taken and the
economic environment in a country is held constant in calculating
the "inefficiency" indices of table 27. For a comparison with table 
27, the predicted values in table 26 should be used. The second and 
fourth columns contain the values of the performance measure 
predicted from the estimated model specification Aa. The first 
number corresponds to the country's estimated plant process and its 
"cost" function, the number in parentheses corresponds to the same 
"cost" function, but under the adoption of the German plant 
process. The indices in the third and fifth columns divides the 
first number by the number in parentheses and answers the question: 
after taking into account that we face different incentives than 
German plant managers, how much worse (or better) are the 
unavailability factor and the unplanned outage rate than they could 
be if the technical process were as efficient as in Germany?
The index for both measures is larger than 1 for France and 
Belgium, which means that both countries could improve their 
performance uniformly (i.e. with respect to both aspects of 
performance) without changing the incentive structure but by 
adopting a technical process as efficient as in Germany (or 
Switzerland). In terms of planned unavailability, the model 
predicts that slightly over one week per reactor year is lost due 
to technical inefficiency in France and Belgium compared to 
Germany. Similarly, about 3.5 and 1.5 unplanned outages,
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respectively, can be attributed to this source. Switzerland appears 
to be the most productive country and the argument is reversed in 
this case: adopting the German production process, but controlling 
it according to the Swiss incentive structure, would cause about 1 
additional week per reactor year lost in planned outages and about 
0.4 additional unplanned outages in Switzerland.
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Table 26: Productivity Calculations: Economic and Technical Effects

" I n e f f i c i e n c y " I n d i c e s

Planned Un­
availability 
(predicted)

Planned Un­
availability 
(observed)

Unplanned 
Outage Rate 
(predicted)

Unplanned
Outage
Rate

(observed)

Belgium 1.00 0.94 2.95 2.94

France 0.87 1.06 5.67 5.08

Germany 1.00 1.00 1.00 1.00

Switzer
-land

0.63 0.75 0.74 0.67
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Table 27: Productivity Calculations, Technical (X-efficiency)
Effects Only

Planned Un­
availability

"Ineffi­
ciency"
Index

Unplanned 
Outage Rate

"Ineffi­
ciency"
Index

Belgium 0.15 (0.13) 1.15 2.46 (0.99) 2.48

France 0.13 (0.11) 1.19 4.73 (1.23) 3.85

Germany 0.15 1.00 0.83 1.00

Switzer­
land

0.10 (0 .12) 0.83 0.62 (1.01) 0.61
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6. Summary and Conclusion
This dissertation analyzes the operating performance of 

nuclear power plants in five European countries using panel data on 
individual reactors. While the duration of a single "up" or "down" 
spell might be analyzed with standard duration models, the sequence 
of up and down spells cannot be analyzed in this fashion. One 
reason for the failure of duration models is their implicit renewal 
assumption and their focus on spell time: the argument in the
hazard function is reset to zero at the beginning of the spell. The 
multiple spell models in economics analyzing sequences of 
unemployment/employment spells or fertility histories are built on 
single spell duration models.

The process formulation suggested in this dissertation 
generalizes the hazard function approach of duration models beyond 
the first event and is a natural formulation for complex systems, 
which are generally built to be repaired rather than replaced 
(renewed) upon failure. The time argument in the hazard or 
intensity function is measured from a constant point for several 
events, such as the first day a plant came on line (plant timet64. 
A particular feature of nuclear power plant operations are cyclical 
patterns due to major maintenance and refuel outages and I found 
fuel cycles to be particularly useful units of analysis. When each 
fuel cycle is treated as a system, time is measured as cycle time 
from the startup from the last refuel outage.

64 "Time" need not be measured in hours or days, it may very 
well be a measured in units of output, or units of usage.
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According to a nonparametric rank test, cycle time (but not 
spell time) by itself accounts for much variation found in the data 
(the hypothesis that the first up spell in each fuel cycle has the 
same distribution was not rejected). Of course, no plant is 
completely "renewed" during refueling; many components are the same 
and cannot be changed during the lifetime of the plant (the 
concrete containment structure being the most salient example). Why 
does the cycle model work for the data? The main reason, I believe, 
is that the properties of "middle age" plants change relatively 
slowly with plant age, compared to the length of a fuel cycle or 
the length of the planning horizon of a utility company or plant 
manager.

As the current stock of plants ages, it may become important 
to analyze long run (30-50 year) changes in plant reliability. This 
question has only recently been addressed and there are very few 
results and even less data available (IAEA, 1988). Should we be 
interested in new plants, plant age might be important because of 
learning effects which contributed to the findings in the 
reliability growth model of section 2.4. There I abstracted from 
the nonstationarity in the fuel cycle to analyze changes in plant 
reliability over several years. In other words, the process of 
interest may depend on several time scales simultaneously. One 
might even want to add an additional one, calendar time, which is 
an important measure of changes exogenous to the process analyzed, 
such as changes in regulation or overall technical improvements. 
For my data set, which spans a relatively short time period (6
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years) of relatively "quiet" years (between the two major nuclear 
accidents) for nuclear power (1981-1986), however, calendar time is 
not particularly interesting to analyze.

Due to the almost exclusive focus on spell time in the 
literature, statistical models are not well developed to deal with 
multiple time scales. The only way in which multiple time scales 
have been used is in a proportional hazard model with spell time as 
the only argument of the hazard function and calendar time and 
plant time (age) as time varying covariates. For many purposes, 
this can be adequate, but for questions such as the failure of 
complex systems where some components are replaced regularly and 
others remain the same over a long period of time, this may be 
problematic. My empirical attempts at modeling multiple time scales 
simultaneously by using additive intensity models with arguments 
corresponding to different time scales were not successful. The 
statistical problem is very similar to the estimation of mixtures: 
a relatively large number of parameters has to be estimated and the 
likelihood function becomes very flat in certain regions. 
Nevertheless, this may be an interesting problem to be investigated 
in larger data sets, such as maintenance data on aircraft, 
automobiles.

The nonstationarity caused by learning or long run aging 
without any periodic resets poses difficult (and unsolved) 
questions for behavioral models. For dynamic optimization models, 
the most important technique for empirical work, the state space 
explodes, making everything but very short horizon models
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impossible. Only one very special model has a known solution, the 
multi-armed bandit problem, and Miller (1984) estimates a model of 
employment choice in this framework. I plan to investigate the 
effects of learning on productivity and reliability in a behavioral 
model in future research.

Although stationary in the sense that there are periodic 
returns to one state, the behavioral model based on the statistical 
results of chapters 2 and 3 introduces several extensions to 
microeconomic models of replacement/maintenance problems65, which 
take essential features of this application into account. In 
particular, it is necessary to consider more than one maintenance 
action and to allow for maintenance actions with durations that are 
not negligible. Although there are models in the operations 
research literature66 addressing the first point ("minimal" repair, 
"imperfect" repair), the second point, which is of crucial 
importance in any practical application, has not been acknowledged 
before. It also may be necessary to consider that the costs for 
different actions change over time. Unfortunately, the data set in 
this application may have been too small to evaluate the benefits 
of the more general specifications: although the dynamic cost
functions substantially improved the fit over the model with

65 Three such studies are Rust (1987), Kennet (1990), and Ryu 
(1990) .

66 The literature on maintenance and repair models is 
comprehensively reviewed in Pierskalla and Voelker (1976) and 
Valdez-Flores and Feldman (1989).
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constant costs, they did not provide uniformly better predictions.
The information of the econometrician is limited compared to 

the information of the operator and the dynamic program that needs 
to be solved in the structural model is therefore related to the 
work on partially observable Markov decision models (POMDP), 
surveyed in Monahan (1982). The essential difference between that 
line of research and the present paper is that the econometrician 
ignores essential information in this application, not the 
operator. Given the well-known computational problems for partially 
observable models, I opted for a simple statistical specification 
for the unobservable component. Although the specification of the 
utility function and the exogenous process was guided by 
statistical information, unobservables were assumed be distributed 
according to an iid extreme value distribution. Although this 
particular specification is very standard and is generally used 
without any justification— how many applied papers justify their 
use of a logit model? —  I would have preferred to be able to specify 
a more general model, especially allowing serial correlation in the 
unobserved components. Unfortunately, the practical usefulness of 
the model depends on being able to solve the maximization problem 
analytically and to express the functional equation for the 
expected value function (eq. 74) without requiring numerical 
integration. It is a trivial exercise to write down the general 
model (eq. 69 and 70), but a numerical solution is impossible 
without access to a supercomputer even when a very coarse 
discretization for the space of unobservables is used (say
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approximate the real line by 100 points). Future work may attempt 
to integrate some results from the research on POMDP. As of now, 
the algorithms developed for POMDP are very special and cannot be 
used for models as complex as the one considered here.

The structure of behavioral models, which are specified at the 
level of "primitive" parameters is invariant to broad classes of 
policy changes, whereas the structure of "reduced" form models 
depends on the current policy implementation (the Lucas critique). 
While models in operations research and the behavioral model 
consider an action such as repair or maintenance as a fixed basic 
unit, in reality there is a substantial range of how maintenance is 
performed. Thus the model cannot consider policy changes that would 
affect the type of maintenance performed and it is a "reduced" form 
model in that sense. For example, imagine the case that new 
regulations drastically limit radiation exposure. One would expect 
the utility company to substitute capital (robots) for human labor 
and since the previous situation was optimal, the relative cost for 
maintenance compared to repair has risen (assuming that more people 
are exposed for a longer time during maintenance/refueling than 
during repairs). However, the model predictions given the observed 
change in relative costs are incorrect because it fails to take 
into account the "deeper" aspects of changes in the type of 
maintenance.

Within its range of applicability, he model is capable of
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distinguishing the effects of economic incentives (the relative 
costs of a fixed type of repair and maintenance) and technical ("X- 
efficiency") factors on various aspects of nuclear power plant 
performance empirically. In particular, the results indicate that 
France and Belgium's relatively good showing in an international 
comparison with respect to one performance measure, namely 
availability, is to some extent due to the incentive structure (the 
estimated "cost" function) that the operators in these two 
countries face. The comparative static calculations for Germany 
illustrate that changing the incentives for operations can have a 
substantial impact on all aspects of plant performance. 
Alternatively, by keeping the incentive structure constant and by 
varying the technical plant process, one obtains a measure of 
technical efficiency. This provides a better assessment of a 
country's success with using a technology than the direct 
comparison of observed performance measures.
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Appendix 1
The International Atomic Energy Agency publishes yearly 

reports on the individual performance of nuclear power plants in 
member states. I have extracted duration data for commercial 
nuclear power plants in several European countries (Belgium, 
France, Germany, Sweden, Switzerland) and Canada. Before 1981, only 
the outage duration and the cause is provided, not the date of the 
outage. From 1981 onwards, the date of the outage is reported as 
well.

Table 28 gives an example of the data set, taken from unit 1 
of the Belgian Doel complex. The entries are explained in table 29. 
This data structure allows to distinguish 28 potentially different 
states (RUN, U-A, P-A, X-A, U-B, ..., U-K, P-K, X-K), but many of 
these states do not occur or have too few occurrences to be useful 
(eg. X-A, P-A). There are some inconsistencies between reporting 
practices and I have recoded numerous outages after referring to 
the description of the outage in the IAEA reports and trade 
journals. In particular, several French plants reported failures of 
safety equipment as an exogenous or regulated outage, instead of an 
outage due to equipment failure as all other plants did. Even less 
reliable or consistent is the information about the subsystem or 
components involved and I have decided not to use this information.

Information was available on 107 different plants, although 
information on several plants was incomplete or incorrect. I did 
not use any data that appeared questionable. The two German 
Philippsburg units, for example, never reported an outage even
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though it was clear from production data that refuel outages 
occurred. The list of plants is given in table 30. The second 
column gives the type of plant. Five different technologies are 
represented in the data set: Pressurized Light Water Reactors
(PWR), Boiling Water Reactors (BWR), Heavy Water Reactors (PHWR) 
(all of which are Canadian reactors), Gas Cooled Reactors (GCR) 
(which represent the first generation of French reactors), and Fast 
Breeders (FBR) (only data on Phenix is available, Super Phenix and 
Kalkar had not started commercial operation by the end of 1986). 
Column 3 contains the electrical generating capacity in MW (which 
may change during operation within a small range). The dates in 
column 4 and 5 and 6 are of the form (yymmdd) and correspond to the 
date of first commercial production and start of plant 
construction. Column 7 and 8 correspond to the operator and the 
constructor of the plant. This information was taken from the IAEA 
1986 book.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 28: Excerpt from data for Belgian plant Doel 1
DOEL1 BE 53592.0 1068.0 0 p F C 810328
DOEL1 BE 54660.0 7476.0 1 X X X 0
DOEL1 BE 62136.0 617.0 0 p F c 820319
DOEL1 BE 62753.0 1591.0 1 X X X 0
D0EL1 BE 64344.0 16.0 0 u F A 820619
DOEL1 BE 64360.0 1832.0 1 X X X 0
DOEL1 BE 66192.0 36.0 0 u F A 820904
DOEL1 BE 66228.0 4332.0 1 X X X 0
DOEL1 BE 70560.0 1199.0 0 p F C 830305
DOEL1 BE 71759.0 337.0 1 X X X 0
DOEL1 BE 72096.0 19.0 0 u F K 830508
DOEL1 BE 72115.0 461.0 1 X X X 0
D0EL1 BE 72576.0 42.0 0 u F D 830528
DOEL1 BE 72618.0 102.0 1 X X X 0
DOEL1 BE 72720.0 12.0 0 u F D 830603
DOEL1 BE 72732.0 492.0 1 X X X 0
DOEL1 BE 73224.0 101.0 0 u F D 830624
DOEL1 BE 73325.0 1123.0 1 X X X 0
DOEL1 BE 74448.0 49.0 0 u F D 830814
DOEL1 BE 74497.0 1367.0 1 X X X 0
D0EL1 BE 75864.0 17.0 0 u F D 831012
DOEL1 BE 75881.0 2887.0 1 X X X 0
DOEL1 BE 78768.0 707.0 0 p F C 840210
DOEL1 BE 79475.0 157.0 1 X X X 0
DOEL1 BE 79632.0 21.0 0 u F A 840317
DOEL1 BE 79653.0 1491.0 1 X X X 0
DOEL1 BE 81144.0 32.0 0 u F A 840519
DOEL1 BE 81176.0 2320.0 1 X X X 0
DOEL1 BE 83496.0 10.0 0 u F A 840825
D0EL1 BE 83506.0 3350.0 1 X X X 0
DOEL1 BE 86856.0 527.0 0 p F C 850112
DOEL1 BE 87383.0 313.0 1 X X X 0
DOEL1 BE 87696.0 49.0 0 u F A 850216
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Table 29: 
Column 1: 
Column 2:

Column 3:

Column 4: 
Column 5:

Column 6 : 

Column 7: 

Column 8:

Column 9:

Code Explanation
Name of the plant
Country 
BE Belgium 
CAN Canada 
D Germany 
F France 
S Sweden 
CH Switzerland
Age of the plant in hours since the day of commercial 
operation
Length of Duration
0 down
1 up
P planned outage 
U unplanned outage
X outage reason exogenous to the plant or run 
F full outage
P partial outage (only full outages were retained)
X run
outage cause 
A: Equipment failure 
B: Operator error
C: Refueling and maintenance
D: Scheduled inspection, maintenance, repair (no

refuelling)
F: Training
G: Stretch-out, Coast-down 
H: Regulatory 
J: Grid Failure 
K: Others 
X: Run
day of outage (yymmdd), 0 : run
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Table 30 Nuclear Power Plants
PLANT TYPE CAP COMMOP CRITICAL CONSTR OPER CONTRACTi
Belcrium
DOEL 1 PWR 392 750215 740700 690600 EBES ACECOWEN
DOEL 2 PWR 392 751201 750804 710900 EBES ACECOWEN
DOEL 3 PWR 897 821001 820614 750100 EBES FRAMACEC
DOEL 4 PWR 1006 850901 850331 781200 EBES ACECOWEN
TIHANGE 1 PWR 870 751001 750221 690900 INTC FRAM
TIHANGE 2 PWR 902 830300 821005 750600 INTC FRAMACECTIHANGE 3 PWR 1006 850901 850605 771200 INTC ACECOWEN
Canada
BRUCE 1 PHWR 740 770901 761217 720100 OH AECL
BRUCE 2 PHWR 740 770901 760727 701200 OH AECL
BRUCE 3 PHWR 740 780201 771128 730200 OH AECL
BRUCE 4 PHWR 740 790118 781210 740200 OH AECL
BRUCE 5 PHWR 750 850301 841115 780600 OH AECL
BRUCE 6 PHWR 750 840914 840529 780200 OH AECL
BRUCE 7 PHWR 750 860410 860107 790400 OH AECL
DOUGLAS POINT PHWR 220 680900 600200 OH AECL
GENTILLY 2 PHWR 645 831001 820911 740400 HQ AECL
PICKERING 1 PHWR 508 710721 710225 650600 OH AECL
PICKERING 2 PHWR 508 711230 710915 650600 OH AECL
PICKERING 3 PHWR 508 720601 720424 660600 OH AECL
PICKERING 4 PHWR 508 730617 730516 660600 OH AECL
PICKERING 5 PHWR 516 830510 821023 740700 OH AECL
PICKERING 6 PHWR 516 840201 831015 740700 OH AECL
PICKERING 7 PHWR 516 850101 841022 740700 OH AECL
PICKERING 8 PHWR 516 860228 851217 750700 OH OH/AECL
POINT LEPREAU PHWR 630 830100 820725 750500 NBEPC AECL
France
BLAYAIS 1 PWR 920 811201 810520 770100 EDF FRAM
BLAYAIS 2 PWR 910 830201 820728 770100 EDF FRAM
BLAYAIS 3 PWR 910 831114 830729 780400 EDF FRAM
BLAYAIS 4 PWR 910 831001 830501 780400 EDF FRAM
BUGEY 1 GCR 540 720800 720321 680400 EDF VARIOUS
BUGEY 2 PWR 925 790301 780420 721199 EDF FRAM
BUGEY 3 PWR 925 790301 780831 730300 EDF FRAM
BUGEY 4 PWR 900 790701 790217 740500 EDF FRAM
BUGEY 5 PWR 900 800103 790715 740600 EDF FRAM
CATTENOM 1 PWR :L360 861024 791000 EDF FRAM
CHINON A2 GCR 170 650308 580100 EDF VARIOUS
CHINON A3 GCR 480 670815 660301 610000 EDF VARIOUS
CHINON B1 PWR 870 840100 821028 770300 EDF FRAM
CHINON B2 PWR 870 840801 830923 770300 EDF FRAM
CHINON B3 PWR 921 860918 801000 EDF FRAM
CHOOZ PWR 266 670415 661019 620100 SENA ACEC
CRUAS 1 PWR 880 840402 830402 780700 EDF FRAM
CRUAS 2 PWR 880 850401 840801 781100 EDF FRAM
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CRUAS 3 PWR 917 840910 840409 790500 EDF FRAM
CRUAS 4 PWR 917 850211 841001 791000 EDF FRAM
DAMPIERRE 1 PWR 890 800910 800315 750200 EDF FRAM
DAMPIERRE 2 PWR 890 810216 801205 750400 EDF FRAM
DAMPIERRE 3 PWR 890 810521 810125 750900 EDF FRAM
DAMPIERRE 4 PWR 890 811120 810805 751200 EDF FRAM
FESSENHEIM 1 PWR 890 771230 770307 710800 EDF FRAM
FESSENHEIM 2 PWR 890 780318 770627 711100 EDF FRAM
FLAMANVILLE 1 PWR 1363 861201 850929 791100 EDF FRAM
FLAMANVILLE 2 PWR 1363 860612 800600 EDF FRAM
GRAVELINES B1 PWR 910 801201 800221 750200 EDF FRAM
GRAVELINES B2 PWR 910 801201 800802 750300 EDF FRAM
GRAVELINES B3 PWR 910 810601 801130 751200 EDF FRAM
GRAVELINES B4 PWR 910 811001 810531 760400 EDF FRAM
GRAVELINES C5 PWR 964 850115 840805 791000 EDF FRAM
GRAVELINES C6 PWR 963 851025 850721 791000 EDF FRAM
PALUEL 1 PWR 1363 851201 850513 770800 EDF FRAM
PALUEL 2 PWR 1363 851201 840811 780300 EDF FRAM
PALUEL 3 PWR 1363 860201 850807 781200 EDF FRAM
PALUEL 4 PWR 1363 860601 860329 791200 EDF FRAM
PHENIX FBR 233 740714 730831 681100 CEA CEA/TECH
ST. ALBAN 1 PWR 1363 860501 850804 790300 EDF FRAM
ST. ALBAN 2 PWR 1363 860607 790800 EDF FRAM
ST. LAURENT A1 GCR 390 690815 690106 630800 EDF VARIOUS
ST. LAURENT A2 GCR 450 710815 710704 660100 EDF VARIOUS
ST. LAURENT B1 PWR 880 830803 810104 760400 EDF FRAM
ST. LAURENT B2 PWR 880 830803 810512 760700 EDF FRAM
SUPER PHENIX FBR 1200 850907 761200 EDF NOVATOME
TRICASTIN 1 PWR 915 801201 800221 741100 EDF FRAM
TRICASTIN 2 PWR 915 801201 800722 741100 EDF FRAM
TRICASTIN 3 PWR 915 810511 801129 750400 EDF FRAM
TRICASTIN 4 PWR 915 811001 810531 750500 EDF FRAM
Germanv
BIBLIS A PWR 1146 750226 740716 700100 RWE KWU
BIBLIS B PWR 1178 770131 760325 720200 RWE KWU
BROKDORF PWR 1307 861222 861008 810401 KBR KWU
BRUNSBUETTEL BWR 770 770209 760622 700415 KKB KWU
GRAFENRHEINFELD PWR 1225 820616 811209 750100 BW KWU
GROHNDE PWR 1289 850201 840800 760600 KWG KWU
GRUNDREMMINGEN B BWR 1244 840719 840309 760720 KGB KWU
GRUNDREMMINGEN C BWR 1249 850118 841026 760720 KGB KWU
ISAR 1 BWR 870 790321 771120 720200 KKI KWU
KNK II FBR 18 790303 771010 740900
KRUEMMEL BWR 1260 840328 830914 740100 KKK KWU
MUEHLHEIM-KAERL PWR 1227 860301 750116 RWE BBR
NECKARWESTHEIM PWR 805 761201 760526 710100 GKN KWU
OBRIGHEIM PWR 283 690330 680922 650300 KWO SIEMENS
PHILIPPSBURG 1 BWR 864 800326 790309 701000 KKP KWU
PHILIPPSBURG 2 BWR 1268 850418 841213 770707 KKP KWU
STADE PWR 630 720519 720108 671200 KKS SIEMENS
THTR-300 HTGR 296 870616 830913 710500 HKG HRB
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UNTERWESER
WUERGASSEN

PWR 1230 790906 780916 720700 KKU KWU
BWR 640 751111 711022 680100 PE AEG

Sweden
BARSEBAECK 1 BWR 570 750700 750118 710200 SYDK ASEA
BARSEBAECK 2 BWR 570 770900 770220 730100 SYDK ASEA
FORSMARK 1 BWR 890 801210 800423 730600 SSPB ASEA
FORSMARK 2 BWR 890 810701 801116 750100 SSPB ASEA
FORSMARK 3 BWR 1050 850818 841028 790100 SSPB ASEA
OSKARSHAMN 1 BWR 440 720200 701212 660800 OKG ASEA
OSKARSHAMN 2 BWR 580 750100 740306 690900 OKG ASEA
OSKARSHAMN 3 BWR 1050 850815 841229 800500 OKG ASEA
RINGHALS 1 BWR 760 760101 741014 690200 SSPB ASEA
RINGHALS 2 PWR 820 750500 740619 701000 SSPB WEST
RINGHALS 3 PWR 915 810909 800729 710900 SSPB WEST
RINGHALS 4 PWR 915 831100 820519 731100 SSPB WEST
Switzerland
BEZNAU 1 PWR 350 690900 690630 650900 NOK WEST/BBC
BEZNAU 2 PWR 350 711200 711016 680100 NOK WEST
GOESGEN PWR 920 791100 790120 731200 KKG KWU
LEIBSTADT BWR 942 841215 840309 740100 KKL GE
MUEHLEBERG BWR 306 721106 710308 670300 BWK GETSCO
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Appendix 2

This appendix collects a number of results on less well known
techniques used in chapters 2 and 3.

Cubic spline smoothing
The polynomial smoothing spline is well suited for a 

statistical model of the following type

yJ=f( tj) +ej (82)

where we observe y.j and t i. The function of interest f() is unknown.
The error terms are independent with mean zero and variance

V{ej)=WjQ2 (83)

This is a typical problem in curve fitting approximation 
theory. The simplest class of functions for this purpose is the 
class of polynomial functions. Unfortunately, high order 
polynomials are only of limited usefulness because the necessary 
flexibility for complicated functions causes severe oscillations 
and the notoriously ill-conditioned Vandermondian matrix presents 
additional numerical problems. Dividing the region for which an 
approximation is desired into several subregions and fitting 
different polynomials for each subregion avoids both of these 
problems. If the approximating function g(x) satisfies certain 
continuity restrictions on its derivatives (g(x)eC®"1), the
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piecewise polynomials belong to the spline space S“(Kn), where Kn is 
a system of knots (or mesh) with

a=t0<tx<t2, . . . , <tn=b (84)

The cubic spline smoother/ in its current form due to 
Schoenberg (1964) and Reinsch (1967), is the function that 
minimizes

SP(g)=J2 Lyj-g(tj)]2+a]‘ [g"(x)]2dx (85)

It is calculated in the following way. Let Aj=tj+1-tj. The continuity 
and boundary conditions imply:

c1=cn=0 
dn=0

+JL-S1.) <86>
J" 3  A, A  j

■bj=T AJ-icJ-i+T  (A C^+T A iCij+i
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Q is an N+2 x N matrix, R an N x N matrix, with elements

rr -  1
A j

_ 1 _ 1 

a,.2.r-r- (87)J+l 

<a 7+a>  1>

r • -=r ■ ■ = —  A •

Two equations for a and c determine the smoothing spline. Including 
a diagonal weighting matrix W containing the inverse of the 
standard deviation of the error terms, these equations are

a=y-aW2Qc (88)
(aQ'W2Q+R) c=Bac=Q'y

For more details on the cubic spline and recent references see 
Silverman (1984, 1985) or Wahba (1975,1983).

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Kernel density estimation
Estimating a continuous density function is a well studied 

topic in statistics and a general reference for results on density 
estimation is Silverman (1986). The best understood method for 
estimating a density function nonparametrically is kernel 
estimation. A kernel estimator of a density function is defined as

where K is the kernel function, h the window width, and X± the i'th 
simulated observation. Provided that the kernel function K(.) is 
non-negative and that

f~(.) is a probability density function. In addition, f^(.) 
inherits all the smoothness properties of K().

A large number of kernel estimates have been suggested in the 
literature. Among the most efficient kernels (Silverman, 1986 
,p.43) are the Epanechnikov

(89)

(90)

(91)

and the biweight kernel.

(92)
= 0 otherwise
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Another easy computable function is the parabolic kernel

= 0.75 (1-fc2) if -l£fc£l (93)otherwise

The problem of choosing the smoothing parameter is of major 
importance. With reference to a normal distribution and a Gaussian 
kernel, it has been established that the optimal value of the 
window width h which minimizes the mean integrated square error is 
proportional to

If the underlying distribution is bimodal, this window width would 
oversmooth the data. Several techniques for choosing the window 
width automatically have been suggested, the best known being 
cross-validation. Density estimates are used in dissertation mainly 
for an exploratory data analysis and I therefore prefer choosing 
the smoothing parameter by plotting out several curves. Examining 
several different plots also gives more insight into the data than 
a single curve with an automatically chosen bandwidth.

h=l. 06aS-1/5 (94)
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Simulating nonstationarv Poisson processes and random variate
generation

The stationary Poisson process with intensity A can easily be 
simulated by adding iid exponential variates which are generated by 
inversion, U is a uniform [0,1] variate

The easiest way to generate a time dependent process is by 
redefining the time scale

Events occur are generated according to a homogeneous Poisson 
process (A=l) and times are then inverted. Unfortunately, this does 
not work for many complicated intensities for which the inversion 
is impossible, such as the exponentiated quadratic polynomial. In 
this case, I use the following thinning algorithm. Prospective 
events are generated by a stationary Poisson process with A*>A(t) 
and an event at time t is accepted with probability A(t)/A*. 
Although the efficiency of generating data is not very high, it is 
still substantially better than the cumbersome approximation by a 
piecewise uniform function. Other suggestions can be found in 
Dagpunar (1988) .

The gamma distribution has been used for many purposes in this

T_ -1 n(P) (95)

T
(96)

o
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dissertation. Depending on the problem, I have used one of the 
following two parametrizations. They are completely equivalent, 
a=l//3, but numerically it may be desirable to choose the version 
with the parameter to be larger than 1.

The generalized gamma distribution is parametrized as follows:

There are many algorithms to generate gamma deviates, see 
Dagpunar (1988), Devroye (1986). Depending on a, I use three 
different algorithms. For a=l, I use the inversion method for 
exponential variates, for a>1.0 envelope rejection is used, 
generating a prospective variate by rescaling a T-variate which can 
be obtained by inversion, for a<1.0 envelope rejection is used 
again and the target distribution is a probabilistic mixture of 
different distributions covering mutually exclusive regions. My 
implementation corresponds to the algorithms G4 and G6 in Dagpunar 
(1988).

x-r_1e"“x or
(97)_f(.x)=JLi_x p-ie" p

pp*r(p) (98)
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